Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Structural Characteristics of Low-Aromaticity Marine and Lacustrine Oil Shales and their NaOH-HCl Kerogens Determined Using 13C NMR and XPS*

Mohammad W. Amer https://orcid.org/0000-0003-3160-9153 A B D , Jameel S. Aljariri Alhesan A , Thomas Gengenbach C , Marc Marshall A , Yi Fei A , W. Roy Jackson A and Alan L. Chaffee https://orcid.org/0000-0001-5100-6910 A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan.

C CSIRO Manufacturing, Clayton, Vic. 3168, Australia.

D Corresponding authors. Email: m.amer@ju.edu.jo; alan.chaffee@monash.edu

Australian Journal of Chemistry 73(12) 1237-1249 https://doi.org/10.1071/CH20168
Submitted: 28 May 2020  Accepted: 7 August 2020   Published: 10 September 2020

Abstract

Few comparisons have been made between low-aromaticity marine and lacustrine oil shales and their kerogens, because the reliability of structural analyses has been limited by a reliance on only one method of kerogen isolation, HCl-HF. Therefore, a detailed analysis by 13C NMR and X-ray photoelectron spectroscopy (XPS) was made for Attrat marine oil shale (Jordan) and Colorado (Green River) lacustrine oil shale (USA) and their NaOH-HCl kerogens. Some differences between oil shales and their kerogens were noted, but many structural features were considered to be true characteristics of the organic matter. The results emphasise the importance of comparing the analyses of kerogens isolated by different methods to ensure that features of the organic matter are not an artefact of the method of kerogen isolation. For both oil shales, the predominantly aliphatic character of the organic part was confirmed and the long average chain length of the aliphatic hydrocarbons was established. All shales and their kerogens showed a small cluster size for the aromatic rings. The elemental analysis obtained by XPS, compared with the bulk elemental analysis, indicated major differences between the near-surface region sampled by XPS and the bulk. The organic S was determined to be aliphatic and aromatic S with possibly small amounts of sulfoxide. Most of the N was pyrrolic with smaller amounts in pyridinic or quaternary form. Nearly all of the surface organic C in both kerogens was bonded to C and H. Two major forms of organic O were distinguishable. A good correlation between the proportion of aliphatic S and pyrolysis reactivity is suggested.


References

[1]  J. G. Speight (Ed.), Fuel Science and Technology Handbook 1990 (Marcel Dekker Inc.: New York, NY).

[2]  J. R. Dyni, in Encyclopedia of Energy (Eds C. J. Cleveland) 2004, pp. 739–752 (Elsevier: New York, NY).

[3]  See p. 283 in: S. Lee, J. G. Speight, S. K. Loyalka, Handbook of Alternative Fuel Technologies 2007 (Taylor and Francis: Boca Raton, FL).

[4]  J. G. Speight, Handbook of Industrial Hydrocarbon Processes 2011 (Elsevier Science: Amsterdam).

[5]  J. S. Aljariri Alhesan, M. W. Amer, M. Marshall, W. R. Jackson, T. Gengenbach, Y. Qi, M. L. Gorbaty, P. J. Cassidy, A. L. Chaffee, Fuel 2019, 236, 880.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  M. W. Amer, Extraction of Oil from Oil Shale by New, More Environmentally Acceptable Methods 2013, Ph.D. thesis, Monash University, Australia.

[7]  M. W. Amer, J. S. Aljariri Alhesan, M. Marshall, A. M. Awwad, O. S. Al-Ayed, J. Anal. Appl. Pyrolysis 2019, 140, 219.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M. W. Amer, Y. Fei, M. Marshall, W. R. Jackson, M. Gorbaty, A. L. Chaffee, Fuel Process. Technol. 2015, 133, 167.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  M. W. Amer, M. Marshall, Y. Fei, W. R. Jackson, M. L. Gorbaty, P. J. Cassidy, A. L. Chaffee, Fuel 2013, 105, 83.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  M. W. Amer, M. Marshall, Y. Fei, W. R. Jackson, M. L. Gorbaty, P. J. Cassidy, A. L. Chaffee, Fuel 2014, 119, 313.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. W. Amer, M. Marshall, Y. Fei, W. R. Jackson, M. L. Gorbaty, P. J. Cassidy, A. L. Chaffee, Fuel Process. Technol. 2015, 135, 91.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. W. Amer, B. Mitrevski, W. R. Jackson, A. L. Chaffee, P. J. Marriott, Talanta 2014, 120, 55.
         | Crossref | GoogleScholarGoogle Scholar | 24468342PubMed |

[13]  B. Mitrevski, M. W. Amer, A. L. Chaffee, P. J. Marriott, Anal. Chim. Acta 2013, 803, 174.
         | Crossref | GoogleScholarGoogle Scholar | 24216212PubMed |

[14]  M. Amer, A. L. Chaffee, Y. Fei, M. Marshall, W. R. Jackson, in Abstracts of Papers, 244th ACS National Meeting & Exposition, Philadelphia, PA, United States, August 19–23 2012, Vol. 57 (2), pp. ENFL-633 (American Chemical Society: Washington, DC).

[15]  S. R. Kelemen, M. Siskin, Prepr. - Am. Chem. Soc. Div. Pet. Chem. 2004, 49, 73.

[16]  M. Afeworki, S. R. Kelemen, M. L. Gorbaty, M. Sansone, Prepr. - Am. Chem. Soc. Div. Pet. Chem. 2006, 51, 570.

[17]  W. H. Calkins, R. J. Torres-Ordonez, B. Jung, M. L. Gorbaty, G. N. George, S. R. Kelemen, Energy Fuels 1992, 6, 411.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  M. L. Gorbaty, S. R. Kelemen, Fuel Process. Technol. 2001, 71, 71.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  M. L. Gorbaty, S. R. Kelemen, G. N. George, P. J. Kwiatek, Fuel 1992, 71, 1255.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M. L. Gorbaty, S. R. Kelemen, S. N. Vaughn, M. Sansone, P. J. Kwiatek, G. N. George, Prepr. Pap. - Am. Chem. Soc. Div. Fuel Chem. 1994, 39, 757.

[21]  S. R. Kelemen, M. Afeworki, M. L. Gorbaty, A. D. Cohen, Energy Fuels 2002, 16, 1450.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  S. R. Kelemen, M. Afeworki, M. L. Gorbaty, P. J. Kwiatek, M. Sansone, C. C. Walters, A. D. Cohen, Energy Fuels 2006, 20, 635.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  S. R. Kelemen, M. Afeworki, M. L. Gorbaty, P. J. Kwiatek, M. S. Solum, J. Z. Hu, R. J. Pugmire, Energy Fuels 2002, 16, 1507.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  S. R. Kelemen, M. Afeworki, M. L. Gorbaty, M. Sansone, P. J. Kwiatek, C. C. Walters, H. Freund, M. Siskin, A. E. Bence, D. J. Curry, M. Solum, R. J. Pugmire, M. Vandenbroucke, M. Leblond, F. Behar, Energy Fuels 2007, 21, 1548.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  S. R. Kelemen, H. Freund, M. L. Gorbaty, P. J. Kwiatek, Energy Fuels 1999, 13, 529.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  S. R. Kelemen, M. L. Gorbaty, G. N. George, P. J. Kwiatek, Energy Fuels 1991, 5, 720.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  S. R. Kelemen, M. L. Gorbaty, P. J. Kwiatek, T. H. Fletcher, M. Watt, M. S. Solum, R. J. Pugmire, Energy Fuels 1998, 12, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  S. R. Kelemen, P. J. Kwiatek, Energy Fuels 1995, 9, 841.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  S. R. Kelemen, K. D. Rose, P. J. Kwiatek, Appl. Surf. Sci. 1993, 64, 167.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  S. R. Kelemen, M. Sansone, P. J. Kwiatek, M. L. Gorbaty, in Abstracts of Papers, 233rd ACS National Meeting, Chicago, IL, United States, March 25–29 2007, Fuel-054.

[31]  S. R. Kelemen, M. Sansone, P. J. Kwiatek, M. L. Gorbaty, Prepr. Symp. - Am. Chem. Soc. Div. Fuel Chem. 2007, 52, 129.

[32]  S. R. Kelemen, M. Sansone, C. C. Walters, P. J. Kwiatek, T. Bolin, Geochim. Cosmochim. Acta 2012, 83, 61.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  S. R. Kelemen, M. Siskin, P. J. Kwiatek, C. C. Walters, Prepr. Symp. - Am. Chem. Soc. Div. Fuel Chem. 2008, 53, 363.

[34]  S. R. Kelemen, S. N. Vaughn, M. L. Gorbaty, P. J. Kwiatek, Fuel 1993, 72, 645.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  S. R. Kelemen, C. C. Walters, P. J. Kwiatek, H. Freund, M. Afeworki, M. Sansone, W. A. Lamberti, R. J. Pottorf, H. G. Machel, K. E. Peters, T. Bolin, Geochim. Cosmochim. Acta 2010, 74, 5305.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  M. Siskin, S. R. Kelemen, C. P. Eppig, L. D. Brown, M. Afeworki, Energy Fuels 2006, 20, 1227.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  J. Tong, X. Han, S. Wang, X. Jiang, Energy Fuels 2011, 25, 4006.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  J. D. McCollum, W. F. Wolff, Energy Fuels 1990, 4, 11.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  J. D. Saxby, Chem. Geol. 1970, 6, 173.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  X. Cao, J. E. Birdwell, M. A. Chappell, Y. Li, J. J. Pignatello, J. Mao, Am. Assoc. Pet. Geol. Bull. 2013, 97, 421.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  Q. Wang, J.-b. Ye, H.-y. Yang, Q. Liu, Energy Fuels 2016, 30, 6271.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  H. Konno, M. Inagaki, F. Kang, in Materials Science and Engineering of Carbon (Ed. M. Inagaki) 2016, pp. 153–171 (Butterworth-Heinemann: Oxford).

[43]  S. Pan, Q. Wang, J. Bai, M. Chi, D. Cui, Z. Wang, Q. Liu, F. Xu, Energy Fuels 2018, 32, 12394.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  Q. Wang, S. Pan, J. Bai, M. Chi, D. Cui, Z. Wang, Q. Liu, F. Xu, Fuel 2018, 230, 319.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  E. Salmon, F. Behar, P. G. Hatcher, Org. Geochem. 2011, 42, 301.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  J. L. Hillier, T. H. Fletcher, M. S. Solum, R. J. Pugmire, Ind. Eng. Chem. Res. 2013, 52, 15522.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  M. S. Solum, C. L. Mayne, A. M. Orendt, R. J. Pugmire, J. Adams, T. H. Fletcher, Energy Fuels 2014, 28, 453.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  G. E. Maciel, L. W. Dennis, Org. Geochem. 1981, 3, 105.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  S. R. Palmer, A. F. Gaines, A. W. P. Jarvie, Fuel 1987, 66, 499.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  A. Ambles, M. Halim, J.-C. Jacquesy, D. Vitorovic, M. Ziyad, Fuel 1994, 73, 17.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  V. Bruan, M. Halim, M. Ziyad, C. Largeau, A. Ambles, J. Anal. Appl. Pyrolysis 2001, 61, 165.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  J. W. Smith, Prepr. - Am. Chem. Soc. Div. Pet. Chem. 1983, 28, 76.

[53]  A. Ekstrom, H. Loeh, L. Dale, Prepr. - Am. Chem. Soc. Div. Pet. Chem. 1983, 28, 166.

[54]  F. P. Miknis, T. F. Turner, G. L. Berdan, P. J. Conn, Energy Fuels 1987, 1, 477.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  B. P. Tissot, D. H. Welte, Petroleum Formation and Occurrence, 2nd edn 1984 (Springer: Berlin).

[56]  M. S. Solum, R. J. Pugmire, D. M. Grant, Energy Fuels 1989, 3, 187.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  M. S. Solum, A. F. Sarofim, R. J. Pugmire, T. H. Fletcher, H. Zhang, Energy Fuels 2001, 15, 961.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  Z. Zujovic, R. SrejiC, D. A. Vucelic, D. Vitorovic, B. Jovancicevic, Fuel 1995, 74, 1903.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  L. Hou, W. Ma, X. Luo, S. Tao, P. Guan, J. Liu, Mar. Pet. Geol. 2020, 116, 104348.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  Z. Wei, X. Gao, D. Zhang, J. Da, Energy Fuels 2005, 19, 240.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  Y. You, X. Han, J. Liu, X. Jiang, J. Therm. Anal. Calorim. 2018, 131, 1845.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  N. Salhi, C. Bennouna, H. Bitar, J. Soc. Maroc. Chim. 1993, 2, 66.

[63]  Q. Liu, Y. Hou, W. Wu, Q. Wang, S. Ren, Q. Liu, Fuel Process. Technol. 2018, 176, 138.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  Q. Wang, Y. Hou, W. Wu, Q. Liu, Z. Liu, Fuel 2018, 219, 151.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  P. J. Redlich, A. L. Chaffee, M. Marshall, M. W. Amer, W. R. Jackson, F. P. Larkins, P. J. Cassidy, Prepr. Symp. - Am. Chem. Soc. Div. Fuel Chem. 2011, 56, 342.

[66]  Q. Wang, Q. Liu, Z.-C. Wang, H.-P. Liu, J.-R. Bai, J.-B. Ye, Fuel Process. Technol. 2017, 160, 170.
         | Crossref | GoogleScholarGoogle Scholar |

[67]  J. D. Dana, E. S. Dana, R. V. Gaines, Dana’s New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana 1997 (John Wiley: Hoboken, NJ).

[68]  L. Martinez, G. Carrascosa Laura, Y. Huttel, M. Lechuga Laura, E. Roman, Phys. Chem. Chem. Phys. 2010, 12, 3301.
         | Crossref | GoogleScholarGoogle Scholar | 20237723PubMed |

[69]  F. J. Rodriguez Nieto, E. Fachini, C. R. Cabrera, A. J. Arvia, Thin Solid Films 2009, 517, 1534.
         | Crossref | GoogleScholarGoogle Scholar |

[70]  G. P. López, D. G. Castner, B. D. Ratner, Surf. Interface Anal. 1991, 17, 267.
         | Crossref | GoogleScholarGoogle Scholar |

[71]  T. R. Gengenbach, R. C. Chatelier, H. J. Griesser, Surf. Interface Anal. 1996, 24, 271.
         | Crossref | GoogleScholarGoogle Scholar |

[72]  X.-H. Guan, Y. Liu, D. Wang, Q. Wang, M.-S. Chi, S. Liu, C.-G. Liu, Energy Fuels 2015, 29, 4122.
         | Crossref | GoogleScholarGoogle Scholar |