Barrierless Reactions of Three Benzonitrile Radical Cations with Ethylene
Oisin J. Shiels A , P. D. Kelly A , Stephen J. Blanksby B , Gabriel da Silva C and Adam J. Trevitt A DA Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
B Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Qld 4001, Australia.
C Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic. 3010, Australia.
D Corresponding author. Email: adamt@uow.edu.au
Australian Journal of Chemistry 73(8) 705-713 https://doi.org/10.1071/CH19606
Submitted: 24 November 2019 Accepted: 14 January 2020 Published: 13 May 2020
Abstract
Reactions of three protonated benzonitrile radical cations with ethylene are investigated. Product branching ratios and reaction kinetics, measured using ion-trap mass spectrometry, are reported and mechanisms are developed with support from quantum chemical calculations. Reactions proceed via pre-reactive van der Waals complexes with no energy barrier (above the reactant energy) and form radical addition and addition–elimination product ions. Rate coefficients are 4-dehydrobenzonitrilium: 1.72 ± 0.01 × 10−11 cm3 molecule−1 s−1, 3-dehydrobenzonitrilium: 1.85 ± 0.01 × 10−11 cm3 molecule−1 s−1, and 2-dehydrobenzonitrilium: 5.96 ± 0.06 × 10−11 cm3 molecule−1 s−1 (with ±50 % absolute uncertainty). A ring-closure mechanism involving the protonated nitrile substituent is proposed for the 2-dehydrobenzonitrilium case and suggests favourable formation of the protonated indenimine cation.
References
[1] B. P. Basile, B. S. Middleditch, J. Oró, Org. Geochem. 1984, 5, 211.| Crossref | GoogleScholarGoogle Scholar |
[2] K. A. Kvenvolden, J. G. Lawless, C. Ponnamperuma, Proc. Natl. Acad. Sci. USA 1971, 68, 486.
| Crossref | GoogleScholarGoogle Scholar | 16591908PubMed |
[3] J. Oró, J. Gilbert, H. Lichtenstein, S. Wikstrom, D. A. Flory, Nature 1971, 230, 105.
| Crossref | GoogleScholarGoogle Scholar | 4927006PubMed |
[4] M. H. Engel, B. Nagy, Nature 1982, 296, 837.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. H. Engel, S. A. Macko, Nature 1997, 389, 265.
| Crossref | GoogleScholarGoogle Scholar | 9305838PubMed |
[6] E. T. Peltzer, J. L. Bada, G. Schlesinger, S. L. Miller, Adv. Space Res. 1984, 4, 69.
| Crossref | GoogleScholarGoogle Scholar | 11537797PubMed |
[7] J. R. Cronin, S. Pizzarello, Science 1997, 275, 951.
| Crossref | GoogleScholarGoogle Scholar | 9020072PubMed |
[8] D. S. N. Parker, R. I. Kaiser, Chem. Soc. Rev. 2017, 46, 452.
| Crossref | GoogleScholarGoogle Scholar |
[9] B. A. McGuire, A. M. Burkhardt, S. Kalenskii, C. N. Shingledecker, A. J. Remijan, E. Herbst, M. C. McCarthy, Science 2018, 359, 202.
| Crossref | GoogleScholarGoogle Scholar | 29326270PubMed |
[10] J. E. Chiar, A. G. Tielens, A. J. Adamson, A. Ricca, Astrophys. J. 2013, 770, 78.
| Crossref | GoogleScholarGoogle Scholar |
[11] I. W. Smith, Angew. Chem. Int. Ed. 2006, 45, 2842.
| Crossref | GoogleScholarGoogle Scholar |
[12] T. P. Snow, V. M. Bierbaum, Annu. Rev. Anal. Chem. 2008, 1, 229.
| Crossref | GoogleScholarGoogle Scholar |
[13] P. D. Kelly, S. J. Bright, J. Phys. Chem. 2019, 123, 8881.
| Crossref | GoogleScholarGoogle Scholar |
[14] C. C. Bright, M. B. Prendergast, P. D. Kelly, J. P. Bezzina, S. J. Blanksby, G. da Silva, A. J. Trevitt, Phys. Chem. Chem. Phys. 2017, 19, 31072.
| Crossref | GoogleScholarGoogle Scholar | 29152628PubMed |
[15] R. I. Kaiser, D. S. Parker, A. M. Mebel, Annu. Rev. Phys. Chem. 2015, 66, 43.
| Crossref | GoogleScholarGoogle Scholar | 25422849PubMed |
[16] D. S. Parker, R. I. Kaiser, Chem. Soc. Rev. 2017, 46, 452.
| Crossref | GoogleScholarGoogle Scholar | 27910987PubMed |
[17] A. J. Trevitt, F. Goulay, C. A. Taatjes, D. L. Osborn, S. R. Leone, J. Phys. Chem. A 2010, 114, 1749.
| Crossref | GoogleScholarGoogle Scholar | 20043665PubMed |
[18] I. Cherchneff, J. R. Barker, A. G. Tielens, Astrophys. J. 1992, 401, 269.
| Crossref | GoogleScholarGoogle Scholar |
[19] T. Oka, Proc. Natl. Acad. Sci. USA 2006, 103, 12235.
| Crossref | GoogleScholarGoogle Scholar | 16894171PubMed |
[20] M. Larsson, W. D. Geppert, G. Nyman, Rep. Prog. Phys. 2012, 75, 066901.
| Crossref | GoogleScholarGoogle Scholar | 22790651PubMed |
[21] T. C. Hsu, J. Shu, Y. Chen, J. J. Lin, Y. T. Lee, X. Yang, J. Chem. Phys. 2001, 115, 9623.
| Crossref | GoogleScholarGoogle Scholar |
[22] B. J. West, L. Lesniak, P. M. Mayer, J. Phys. Chem. A 2019, 123, 3569.
| Crossref | GoogleScholarGoogle Scholar | 30939003PubMed |
[23] A. L. Betz, Astrophys. J. 1981, 244, L103.
| Crossref | GoogleScholarGoogle Scholar |
[24] B. B. Kirk, D. G. Harman, S. J. Blanksby, J. Phys. Chem. A 2010, 114, 1446.
| Crossref | GoogleScholarGoogle Scholar | 20039627PubMed |
[25] D. G. Harman, S. J. Blanksby, Org. Biomol. Chem. 2007, 5, 3495.
| Crossref | GoogleScholarGoogle Scholar | 17943209PubMed |
[26] P. W. Atkins, J. De Paula, J. Keeler, in Atkins’ Physical Chemistry (Eds J. Crowe, J. Fiorillo) 2018, Vol. 1, Ch. 22, pp. 811–818 (Oxford University Press: Oxford).
[27] F. Zhang, X. Gu, Y. Guo, R. I. Kaiser, J. Org. Chem. 2007, 72, 7597.
| Crossref | GoogleScholarGoogle Scholar | 17784772PubMed |
[28] E. W. Fu, R. C. Dunbar, J. Am. Chem. Soc. 1978, 100, 2283.
| Crossref | GoogleScholarGoogle Scholar |
[29] C. S. Hansen, S. J. Blanksby, A. J. Trevitt, Phys. Chem. Chem. Phys. 2015, 17, 25882.
| Crossref | GoogleScholarGoogle Scholar | 26027703PubMed |
[30] T. Su, W. J. Chesnavich, J. Chem. Phys. 1982, 76, 5183.
| Crossref | GoogleScholarGoogle Scholar |
[31] G. da Silva, B. B. Kirk, C. Lloyd, A. J. Trevitt, S. J. Blanksby, J. Phys. Chem. Lett. 2012, 3, 805.
| Crossref | GoogleScholarGoogle Scholar | 26286401PubMed |
[32] E. G. Hohenstein, S. T. Chill, C. D. Sherrill, J. Chem. Theory Comput. 2008, 4, 1996.
| Crossref | GoogleScholarGoogle Scholar | 26620472PubMed |
[33] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 2016 (Gaussian, Inc.: Wallingford, CT).
[34] C. E. Check, T. O. Faust, J. M. Bailey, B. J. Wright, T. M. Gilbert, L. S. Sunderlin, J. Phys. Chem. 2001, 105, 8111.
| Crossref | GoogleScholarGoogle Scholar |