Constructing an Interpenetrated NiII-Based Coordination Polymer Based on a Flexible Dicarboxylate Ligand and an N-Donor Ligand: Preparation, Topological Diversity, and Catalytic Properties
Feng Guo A C , Changhua Su B , Yuhang Fan A and Wenbing Shi AA Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China.
B School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
C Corresponding author. Email: guofeng1510@yeah.net
Australian Journal of Chemistry 73(11) 1060-1064 https://doi.org/10.1071/CH19498
Submitted: 3 October 2019 Accepted: 5 February 2020 Published: 26 March 2020
Abstract
A novel coordination polymer (CP) was constructed using 1,3-bis(4-carboxyphenoxy) propane (H2bcp), 1,4-bis(1-imidazol-yl)-2,5-dimethyl benzene (bimb), and NiII ions. [Ni(bcp)(bimb)]·H2O]n (1) shows an interesting 2D + 2D → 3D inclined polyrotaxane topology. The structure was characterised by many methods. This work indicates that the flexible and neutral pyridine ligand plays a significant role in constructing CPs. Furthermore, 1 is a highly efficient catalyst for the reaction of CO2 and epoxides.
References
[1] S.-H. Lu, Y. Li, S.-X. Yang, R.-D. Zhao, Z.-X. Lu, Z.-X. Liu, Y. Qin, L.-Y. Zheng, Q.-E. Cao, Inorg. Chem. 2019, 58, 11793.| Crossref | GoogleScholarGoogle Scholar | 31430123PubMed |
[2] Z. Zhou, M.-L. Han, H.-R. Fu, L.-F. Ma, F. Luo, D.-S. Li, Dalton Trans. 2018, 47, 5359.
| Crossref | GoogleScholarGoogle Scholar | 29589624PubMed |
[3] H. He, Q.-Q. Zhu, C.-P. Li, M. Du, Cryst. Growth Des. 2019, 19, 694.
| Crossref | GoogleScholarGoogle Scholar |
[4] Y. J. Cheng, R. Wang, S. Wang, X. J. Xi, L. F. Ma, S. Q. Zang, Chem. Commun. 2018, 54, 13563.
| Crossref | GoogleScholarGoogle Scholar |
[5] C. Zhang, Y. Liu, L. Sun, H. Shi, C. Shi, Z. Liang, J. Li, Chem. – Eur. J. 2018, 24, 2718.
| Crossref | GoogleScholarGoogle Scholar | 29383763PubMed |
[6] H. He, Y. Song, F. Sun, Z. Bian, L. Gao, G. Zhu, J. Mater. Chem. A Mater. Energy Sustain. 2015, 3, 16598.
| Crossref | GoogleScholarGoogle Scholar |
[7] J. Bitzer, W. Kleist, Chem. – Eur. J. 2019, 25, 1866.
| Crossref | GoogleScholarGoogle Scholar | 30238520PubMed |
[8] H. He, D.-Y. Zhang, F. Guo, F. Sun, Inorg. Chem. 2018, 57, 7314.
| Crossref | GoogleScholarGoogle Scholar | 29877696PubMed |
[9] E. S. Bazhina, A. A. Bovkunova, A. V. Medved’ko, E. A. Varaksina, I. V. Taidakov, N. N. Efimov, M. A. Kiskin, I. L. Eremenko, Chem. Asian J. 2018, 13, 2060.
| Crossref | GoogleScholarGoogle Scholar |
[10] W. Huang, F. Pan, Y. Liu, S. Huang, Y. Li, J. Yong, Y. Li, A. M. Kirillov, D. Wu, Inorg. Chem. 2017, 56, 6362.
| Crossref | GoogleScholarGoogle Scholar | 28537402PubMed |
[11] Y. Zhao, D. S. Deng, L. F. Ma, B. M. Ji, L. Y. Wang, Chem. Commun. 2013, 49, 10299.
| Crossref | GoogleScholarGoogle Scholar |
[12] H. R. Fu, N. Wang, J. H. Qin, M. L. Han, L. F. Ma, F. Wang, Chem. Commun. 2018, 54, 11645.
| Crossref | GoogleScholarGoogle Scholar |
[13] G.-D. Lu, Z.-H. Zhang, Y.-Y. Tong, X.-M. Liu, X.-F. Ma, X.-P. Xuan, Chem. Asian J. 2019, 14, 1970.
| Crossref | GoogleScholarGoogle Scholar | 30920761PubMed |
[14] X. G. Yang, L. F. Ma, D. P. Yan, Chem. Sci. 2019, 10, 14567.
[15] H. He, Q.-Q. Zhu, F. Sun, G. Zhu, Cryst. Growth Des. 2018, 18, 5573.
| Crossref | GoogleScholarGoogle Scholar |
[16] H.-R. Fu, Y. Zhao, Z. Zhou, X.-G. Yang, L.-F. Ma, Dalton Trans. 2018, 47, 3725.
| Crossref | GoogleScholarGoogle Scholar | 29441393PubMed |
[17] M.-Y. Chao, J. Chen, Z.-M. Hao, X.-Y. Tang, L. Ding, W.-H. Zhang, D. J. Young, J.-P. Lang, Cryst. Growth Des. 2019, 19, 724.
| Crossref | GoogleScholarGoogle Scholar |
[18] K. Roztocki, D. Jędrzejowski, M. Hodorowicz, I. Senkovska, S. Kaskel, D. Matoga, Cryst. Growth Des. 2018, 18, 488.
| Crossref | GoogleScholarGoogle Scholar |
[19] C. Xu, C. Bi, Z. Zhu, R. Luo, X. Zhang, D. Zhang, C. Fan, L. Cui, Y. Fan, CrystEngComm 2019, 21, 2333.
| Crossref | GoogleScholarGoogle Scholar |
[20] X.-M. Meng, L.-S. Cui, X.-P. Wang, X.-Y. Zhang, X. Zhang, S.-Y. Bi, CrystEngComm 2017, 19, 6630.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. Halder, B. Bhattacharya, F. Haque, D. Ghoshal, Cryst. Growth Des. 2017, 17, 6613.
| Crossref | GoogleScholarGoogle Scholar |
[22] F. Su, C.-Y. Zhou, C. Han, L.-T. Wu, X. Wu, L. Sun, J. Su, S.-S. Feng, L.-P. Lu, M.-L. Zhu, CrystEngComm 2018, 20, 1818.
| Crossref | GoogleScholarGoogle Scholar |
[23] J.-Q. Liu, J. Wu, Y.-Y. Wang, J.-T. Lin, H. Sakiyama, CrystEngComm 2014, 16, 3103.
| Crossref | GoogleScholarGoogle Scholar |
[24] F. Guo, C. Su, Y. Fan, W. Fu, J. Solid State Chem. 2019, 277, 83.
| Crossref | GoogleScholarGoogle Scholar |
[25] Q.-Q. Zhu, H. He, Y. Yan, J. Yuan, D.-Q. Lu, D.-Y. Zhang, F. Sun, G. Zhu, Inorg. Chem. 2019, 58, 7746.
| Crossref | GoogleScholarGoogle Scholar | 31140790PubMed |
[26] G. Lal, B. S. Gelfand, J.-B. Lin, A. Banerjee, S. Trudel, G. K. H. Shimizu, Inorg. Chem. 2019, 58, 9874.
| Crossref | GoogleScholarGoogle Scholar | 31335137PubMed |
[27] W. Wang, N. Gong, H. Yin, B. Zhang, P. Guo, B. Liu, Y.-Y. Wang, Inorg. Chem. 2019, 58, 10295.
| Crossref | GoogleScholarGoogle Scholar | 31329423PubMed |
[28] I.-H. Park, K. Sasaki, H. S. Quah, E. Lee, M. Ohba, S. S. Lee, J. J. Vittal, Cryst. Growth Des. 2019, 19, 1996.
| Crossref | GoogleScholarGoogle Scholar |
[29] X.-X. Wu, H.-R. Fu, M.-L. Han, Z. Zhou, L.-F. Ma, Cryst. Growth Des. 2017, 17, 6041.
| Crossref | GoogleScholarGoogle Scholar |
[30] J. Hungerford, K. S. Walton, Inorg. Chem. 2019, 58, 7690.
| Crossref | GoogleScholarGoogle Scholar | 31150221PubMed |
[31] G. M. Sheldrick, Acta Crystallogr. A 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[32] G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[33] S. N. Ansari, P. Kumar, A. K. Gupta, P. Mathur, S. M. Mobin, Inorg. Chem. 2019, 58, 9723.
| Crossref | GoogleScholarGoogle Scholar | 31322862PubMed |
[34] H. He, Q. Sun, W. Gao, J. A. Perman, F. Sun, G. Zhu, B. Aguila, K. Forrest, B. Space, S. Ma, Angew. Chem. Int. Ed. 2018, 57, 4657.
| Crossref | GoogleScholarGoogle Scholar |
[35] W.-Y. Gao, C.-Y. Tsai, L. Wojtas, T. Thiounn, C.-C. Lin, S. Ma, Inorg. Chem. 2016, 55, 7291.
| Crossref | GoogleScholarGoogle Scholar | 27337152PubMed |
[36] X. Mu, C. Liu, N. Zhao, J. Liu, F. Sun, Inorg. Chem. Commun. 2019, 102, 256.
| Crossref | GoogleScholarGoogle Scholar |
[37] H. He, Q.-Q. Zhu, J.-N. Zhao, H. Sun, J. Chen, C.-P. Li, M. Du, Chem. – Eur. J. 2019, 25, 11474.
| Crossref | GoogleScholarGoogle Scholar | 31119797PubMed |
[38] Y. Rachuri, J. F. Kurisingal, R. K. Chitumalla, S. Vuppala, Y. Gu, J. Jang, Y. Choe, E. Suresh, D.-W. Park, Inorg. Chem. 2019, 58, 11389.
| Crossref | GoogleScholarGoogle Scholar | 31433625PubMed |
[39] B. Parmar, P. Patel, R. I. Kureshy, N. H. Khan, E. Suresh, Chem. – Eur. J. 2018, 24, 15831.
| Crossref | GoogleScholarGoogle Scholar | 30044524PubMed |
[40] B. Aguila, Q. Sun, X. Wang, E. O’Rourke, A. M. Al-Enizi, A. Nafady, S. Ma, Angew. Chem. Int. Ed. 2018, 57, 10107.
| Crossref | GoogleScholarGoogle Scholar |
[41] H. He, Q.-Q. Zhu, C. Zhang, Y. Yan, J. Yuan, J. Chen, C.-P. Li, M. Du, Chem. Asian J. 2019, 14, 958.
| Crossref | GoogleScholarGoogle Scholar | 30719869PubMed |
[42] C. K. Ng, R. W. Toh, T. T. Lin, H.-K. Luo, T. S. A. Hor, J. Wu, Chem. Sci. 2019, 10, 1549.
| Crossref | GoogleScholarGoogle Scholar | 30809373PubMed |
[43] L. He, J. K. Nath, Q. Lin, Chem. Commun. 2019, 55, 412.
| Crossref | GoogleScholarGoogle Scholar |
[44] J. Liu, Y.-Z. Fan, X. Li, Y.-W. Xu, Z. Li, C.-Y. Su, ChemSusChem 2018, 11, 2340.
| Crossref | GoogleScholarGoogle Scholar | 29790289PubMed |
[45] Y.-S. Xue, W. Cheng, J.-P. Cao, Y. Xu, Chem. Asian J. 2019, 14, 1949.
| Crossref | GoogleScholarGoogle Scholar | 30884145PubMed |
[46] B. Parmar, P. Patel, R. S. Pillai, R. K. Tak, R. I. Kureshy, N. Khan, E. Suresh, Inorg. Chem. 2019, 58, 10084.
| Crossref | GoogleScholarGoogle Scholar | 31322345PubMed |
[47] L.-Q. Wei, B.-H. Ye, Inorg. Chem. 2019, 58, 4385.
| Crossref | GoogleScholarGoogle Scholar | 30880391PubMed |
[48] Bhaskaran, M. Trivedi, A. K. Yadav, G. Singh, A. Kumar, G. Kumar, A. Husain, N. P. Rath, Dalton Trans. 2019, 48, 10078.
| Crossref | GoogleScholarGoogle Scholar | 31179450PubMed |
[49] X. Sun, J. Gu, Y. Yuan, C. Yu, J. Li, H. Shan, G. Li, Y. Liu, Inorg. Chem. 2019, 58, 7480.
| Crossref | GoogleScholarGoogle Scholar | 31074626PubMed |
[50] H. He, J. A. Perman, G. Zhu, S. Ma, Small 2016, 12, 6309.
| Crossref | GoogleScholarGoogle Scholar | 27762496PubMed |
[51] S. Chand, S. C. Pal, M. Mondal, S. Hota, A. Pal, R. Sahoo, M. C. Das, Cryst. Growth Des. 2019, 19, 5343.
| Crossref | GoogleScholarGoogle Scholar |
[52] J. Liang, Y.-Q. Xie, Q. Wu, X.-Y. Wang, T.-T. Liu, H.-F. Li, Y.-B. Huang, R. Cao, Inorg. Chem. 2018, 57, 2584.
| Crossref | GoogleScholarGoogle Scholar | 29430915PubMed |
[53] X.-H. Ji, N.-N. Zhu, J.-G. Ma, P. Cheng, Dalton Trans. 2018, 47, 1768.
| Crossref | GoogleScholarGoogle Scholar | 29337323PubMed |
[54] Z. Wu, X. Lan, Y. Zhang, M. Li, G. Bai, Dalton Trans. 2019, 48, 11063.
| Crossref | GoogleScholarGoogle Scholar | 31250848PubMed |
[55] K. Maity, C. K. Karan, K. Biradha, Chem. – Eur. J. 2018, 24, 10988.
| Crossref | GoogleScholarGoogle Scholar | 29888814PubMed |
[56] R. Zhang, L. Wang, C. Xu, H. Yang, W. Chen, G. Gao, W. Liu, Dalton Trans. 2018, 47, 7159.
| Crossref | GoogleScholarGoogle Scholar | 29770424PubMed |
[57] F. Fei, Y. Dou, X. Hao, W. Lan, Z. Zhou, L. Yang, Inorg. Chem. Commun. 2019, 106, 22.
| Crossref | GoogleScholarGoogle Scholar |
[58] J. Li, W.-J. Li, S.-C. Xu, B. Li, Y. Tang, Z.-F. Lin, Inorg. Chem. Commun. 2019, 106, 70.
| Crossref | GoogleScholarGoogle Scholar |
[59] T.-D. Hu, Y. Jiang, Y.-H. Ding, J. Mater. Chem. A Mater. Energy Sustain. 2019, 7, 14825.
| Crossref | GoogleScholarGoogle Scholar |