Sensitive Detection of Argonaute2 by Triple-Helix Molecular Switch Reaction and Pyrene Excimer Switching
Xianjiu Liao A B C , Jianbin Pan C , Xiaolu Zhang D E and Qianli Tang A B EA College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
B West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
C State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
D Department of Neurosurgery, Wuxi People’s Hospital affiliated with Nanjing Medical University, Wuxi, Jiangsu 214000, China.
E Corresponding authors. Email: qhzhangxiaolu@163.com; htmgx919@163.com
Australian Journal of Chemistry 73(11) 1074-1079 https://doi.org/10.1071/CH19485
Submitted: 8 October 2019 Accepted: 13 February 2020 Published: 28 May 2020
Abstract
RNA interference (RNAi) is a powerful tool for silencing target genes in a variety of cells and has great therapeutic potential. It is triggered by small interfering RNAs (siRNAs) and by an RNA-binding protein (argonaute, Ago). In this manuscript, we designed a simple fluorescence sensor strategy for sensitive detection of argonaute2 (Ago2) based on the base pairing principle of Watson–Crick and Hoogsteen and the pyrene excimer switch. The sensing platform has extremely high sensitivity and a detection limit of 0.1 nM. It can be used to detect endogenous Ago2 in cancer cells and has great potential in clinical diagnosis and biomedical research.
References
[1] S. M. Elbashir, W. Lendeckel, T. Tuschl, Genes Dev. 2001, 15, 188.| Crossref | GoogleScholarGoogle Scholar | 11157775PubMed |
[2] S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, T. Tuschl, Nature 2001, 411, 494.
| Crossref | GoogleScholarGoogle Scholar | 11373684PubMed |
[3] S. Cheloufi, C. O. Dos Santos, M. M. W. Chong, G. J. Hannon, Nature 2010, 465, 584.
| Crossref | GoogleScholarGoogle Scholar | 20424607PubMed |
[4] F. Frank, N. Sonenberg, B. Nagar, Nature 2010, 465, 818.
| Crossref | GoogleScholarGoogle Scholar | 20505670PubMed |
[5] M. Ghildiyal, J. Xu, H. Seitz, Z. Weng, P. D. Zamore, RNA 2010, 16, 43.
| Crossref | GoogleScholarGoogle Scholar | 19917635PubMed |
[6] T. A. Montgomery, M. D. Howell, J. T. Cuperus, D. Li, J. E. Hansen, A. L. Alexander, E. J. Chapman, N. Fahlgren, E. Allen, J. C. Carrington, Cell 2008, 133, 128.
| Crossref | GoogleScholarGoogle Scholar | 18342362PubMed |
[7] S. Mi, T. Cai, Y. Hu, Y. Chen, E. Hodges, F. Ni, L. Wu, S. Li, H. Zhou, C. Long, S. Chen, G. J. Hannon, Y. Qi, Cell 2008, 133, 116.
| Crossref | GoogleScholarGoogle Scholar | 18342361PubMed |
[8] G. Hutvagner, M. J. Simard, Nat. Rev. Mol. Cell Biol. 2008, 9, 22.
| Crossref | GoogleScholarGoogle Scholar | 18073770PubMed |
[9] D. Cifuentes, H. Xue, D. W. Taylor, H. Patnode, Y. Mishima, S. Cheloufi, E. Ma, S. Mane, G. J. Hannon, N. D. Lawson, S. A. Wolfe, A. J. Giraldez, Science 2010, 328, 1694.
| Crossref | GoogleScholarGoogle Scholar | 20448148PubMed |
[10] S. Diederichs, D. A. Haber, Cell 2007, 131, 1097.
| Crossref | GoogleScholarGoogle Scholar | 18083100PubMed |
[11] N. T. Schirle, I. J. MacRae, Science 2012, 336, 1037.
| Crossref | GoogleScholarGoogle Scholar | 22539551PubMed |
[12] J. Krell, J. Stebbing, A. E. Frampton, C. Carissimi, V. Harding, A. De Giorgio, V. Fulci, G. Macino, T. Colombo, L. Castellano, Lancet 2015, 385, S15.
| Crossref | GoogleScholarGoogle Scholar | 26312837PubMed |
[13] G. Meister, M. Landthaler, A. Patkaniowska, Y. Dorsett, G. Teng, T. Tuschl, Mol. Cell 2004, 15, 185.
| Crossref | GoogleScholarGoogle Scholar | 15260970PubMed |
[14] X. Zhang, P. Graves, Y. Zeng, Biochim. Biophys. Acta 2013, 1830, 2553.
| Crossref | GoogleScholarGoogle Scholar | 23201202PubMed |
[15] D. G. Zisoulis, Z. S. Kai, R. K. Chang, A. E. Pasquinelli, Nature 2012, 486, 541.
| Crossref | GoogleScholarGoogle Scholar | 22722835PubMed |
[16] R. Shang, F. Zhang, B. Xu, H. Xi, X. Zhang, W. Wang, L. Wu, Nat. Commun. 2015, 6, 8430.
| Crossref | GoogleScholarGoogle Scholar | 26455506PubMed |
[17] K. M. Felice, D. W. Salzman, J. Shubert-Coleman, K. P. Jensen, H. M. Furneaux, Biochem. J. 2009, 422, 329.
| Crossref | GoogleScholarGoogle Scholar | 19508234PubMed |
[18] Z. Wu, G.-Q. Liu, X.-L. Yang, J.-H. Jiang, J. Am. Chem. Soc. 2015, 137, 6829.
| Crossref | GoogleScholarGoogle Scholar | 25969953PubMed |
[19] R.-y. Wu, K.-w. Zheng, J.-y. Zhang, Y.-h. Hao, Z. Tan, Angew. Chem. Int. Ed. 2015, 54, 2447.
| Crossref | GoogleScholarGoogle Scholar |
[20] K. Zhang, K. Wang, X. Zhu, Y. Gao, M. Xie, Chem. Commun. 2014, 50, 14221.
| Crossref | GoogleScholarGoogle Scholar |
[21] H. Dong, J. Lei, L. Ding, Y. Wen, H. Ju, X. Zhang, Chem. Rev. 2013, 113, 6207.
| Crossref | GoogleScholarGoogle Scholar | 23697835PubMed |
[22] K. Ikeda, M. Satoh, K. M. Pauley, M. J. Fritzler, W. H. Reeves, E. K. L. Chan, J. Immunol. Methods 2006, 317, 38.
| Crossref | GoogleScholarGoogle Scholar | 17054975PubMed |
[23] A. Ceribelli, A. Tincani, I. Cavazzana, F. Franceschini, R. Cattaneo, B. A. Pauley, J. Y. F. Chan, E. K. L. Chan, M. Satoh, Autoimmunity 2011, 44, 90.
| Crossref | GoogleScholarGoogle Scholar | 20695766PubMed |
[24] F. Ma, W.-j. Liu, Q. Zhang, C.-y. Zhang, Chem. Commun. 2017, 53, 10596.
| Crossref | GoogleScholarGoogle Scholar |
[25] Q. Zhang, T. Deng, J. Li, W. Xu, G. Shen, R. Yu, Biosens. Bioelectron. 2015, 68, 253.
| Crossref | GoogleScholarGoogle Scholar | 25590970PubMed |
[26] P. Thirupathi, J.-Y. Park, L. N. Neupane, M. Y. L. N. Kishore, K.-H. Lee, ACS Appl. Mater. Interfaces 2015, 7, 14243.
| Crossref | GoogleScholarGoogle Scholar | 26068096PubMed |
[27] Z. Qing, X. He, J. Huang, K. Wang, Z. Zou, T. Qing, Z. Mao, H. Shi, D. He, Anal. Chem. 2014, 86, 4934.
| Crossref | GoogleScholarGoogle Scholar | 24749630PubMed |
[28] C. D. Johnson, A. Esquela-Kerscher, G. Stefani, M. Byrom, K. Kelnar, D. Ovcharenko, M. Wilson, X. Wang, J. Shelton, J. Shingara, L. Chin, D. Brown, F. J. Slack, Cancer Res. 2007, 67, 7713.
| Crossref | GoogleScholarGoogle Scholar | 17699775PubMed |
[29] K. Zhang, W. Huang, Y. Huang, H. Li, K. Wang, X. Zhu, M. Xie, Anal. Chem. 2019, 91, 7086.
| Crossref | GoogleScholarGoogle Scholar | 31050888PubMed |
[30] K. Zhang, X.-J. Yang, W. Zhao, M.-C. Xu, J.-J. Xu, H.-Y. Chen, Chem. Sci. 2017, 8, 4973.
| Crossref | GoogleScholarGoogle Scholar | 28959421PubMed |
[31] A. Amodio, B. Zhao, A. Porchetta, A. Idili, M. Castronovo, C. Fan, F. Ricci, J. Am. Chem. Soc. 2014, 136, 16469.
| Crossref | GoogleScholarGoogle Scholar | 25369216PubMed |
[32] N. Yang, Y. Cao, P. Han, X. Zhu, L. Sun, G. Li, Anal. Chem. 2012, 84, 2492.
| Crossref | GoogleScholarGoogle Scholar | 22283827PubMed |