Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Electrochemistry of Neodymium in Phosphonium Ionic Liquids: The Influence of Cation, Water Content, and Mixed Anions

Laura Sanchez-Cupido A , Jennifer M. Pringle B , Amal Siriwardana A , Cristina Pozo-Gonzalo https://orcid.org/0000-0002-7890-6457 B C and Maria Forsyth B
+ Author Affiliations
- Author Affiliations

A TECNALIA, Basque Research and Technology Alliance (BRTA), Paseo Mikeletegi 2, 20009 San Sebastián, Spain.

B Institute for Frontier Materials, Deakin University, Melbourne, Vic. 3125, Australia.

C Corresponding author. Email: cpg@deakin.edu.au

Australian Journal of Chemistry 73(11) 1080-1087 https://doi.org/10.1071/CH19581
Submitted: 11 November 2019  Accepted: 21 February 2020   Published: 27 May 2020

Abstract

Electrodeposition using ionic liquids has emerged as an environmentally friendly approach to recover critical metals, such a neodymium. The investigation of ionic liquid chemistries and compositions is an important part of the move towards efficient neodymium recovery from end-of-life products that needs further research. Thus, in this paper we have investigated a series of phosphonium ionic liquids as potential electrolytic media. Anions such as bis(trifluoromethylsulfonyl)imide (TFSI), dicyanamide (DCA), and triflate (TfO) have been investigated, in combination with short- and long-alkyl-chain phosphonium cations. The work here suggests that [TFSI] is one of the most promising anions for successful deposition of Nd and that water plays an important role. In contrast, electrochemical behaviour was significantly hindered in the case of DCA ionic liquid, most likely owing to strong coordination between [DCA] and Nd3+. Mixtures of anions, [TfO] and [TFSI], have also been investigated in this work, resulting in two reduction processes that could be related to a different deposition mechanism involving two steps, as observed in the case of dysprosium or, alternatively, different coordination environments that have distinct deposition potentials. Additionally, we investigated the influence of electrode substrates – glassy carbon and copper. Cu electrodes resulted in the largest current densities and thus were used for subsequent electrodeposition at constant potential. These findings are valuable for optimising the deposition of Nd in order to develop more efficient and inexpensive recycling technologies for rare earth metals.


References

[1]  A. Kumari, M. K. Sinha, S. Pramanik, S. K. Sahu, Waste Manag. 2018, 75, 486.
         | Crossref | GoogleScholarGoogle Scholar | 29397277PubMed |

[2]  E. Alonso, A. M. Sherman, T. J. Wallington, M. P. Everson, F. R. Field, R. Roth, R. E. Kirchain, Environ. Sci. Technol. 2012, 46, 3406.
         | Crossref | GoogleScholarGoogle Scholar | 22304002PubMed |

[3]  European Commission, Report on Critical Raw Materials for the EU 2014. Available at: https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en (accessed 11 May 2020)

[4]  European Commission, Study on the Review of the List of Critical Raw Materials – Executive Summary 2017. 10.2873/876644

[5]  Joint Research Centre (European Commission), Knowledge Service, Critical Raw Materials and the Circular Economy. JRC Science for Policy Report, Background Report 2017. 10.2760/378123

[6]  M. Tanaka, T. Oki, K. Koyama, H. Narita, T. Oishi, Recycling of Rare Earths from Scrap 2013 (Elsevier B.V.: Amsterdam).

[7]  F. Endres, A. P. Abbot, D. MacFarlane, Electrodeposition from Ionic Liquids 2008 (Wiley-VCH: Weinheim).

[8]  A. P. Abbott, K. J. McKenzie, Phys. Chem. Chem. Phys. 2006, 8, 4265.
         | Crossref | GoogleScholarGoogle Scholar | 16986069PubMed |

[9]  S. Zein El Abedin, F. Endres, ChemPhysChem 2006, 7, 58.
         | Crossref | GoogleScholarGoogle Scholar | 16308878PubMed |

[10]  F. Liu, Y. Deng, X. Han, W. Hu, C. Zhong, J. Alloys Compd. 2016, 654, 163.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  H. Kondo, M. Matsumiya, K. Tsunashima, S. Kodama, Electrochim. Acta 2012, 66, 313.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  H. Kondo, M. Matsumiya, K. Tsunashima, S. Kodama, ECS Trans. 2013, 50, 529.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  L. Sanchez-Cupido, J. M. Pringle, A. L. Siriwardana, A. Unzurrunzaga, M. Hilder, M. Forsyth, C. Pozo-Gonzalo, J. Phys. Chem. Lett. 2019, 10, 289.
         | Crossref | GoogleScholarGoogle Scholar | 30620201PubMed |

[14]  W. Linert, R. F. Jameson, A. Taha, J. Chem. Soc., Dalton Trans. 1993, 3181.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  W. Linert, A. Camard, M. Armand, C. Michot, Coord. Chem. Rev. 2002, 226, 137.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. A. M. Noor, P. C. Howlett, D. R. MacFarlane, M. Forsyth, Electrochim. Acta 2013, 114, 766.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  M. Forsyth, H. Yoon, F. Chen, H. Zhu, D. R. MacFarlane, M. Armand, P. C. Howlett, J. Phys. Chem. C 2016, 120, 4276.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  P. C. Howlett, E. I. Izgorodina, M. Forsyth, D. R. MacFarlane, Z. Phys. Chem. 2006, 220, 1483.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  H. Tang, B. Pesic, J. Nucl. Mater. 2015, 458, 37.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  D. Shen, R. Akolkar, J. Electrochem. Soc. 2017, 164, H5292.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  M. Matsumiya, H. Ota, K. Kuribara, K. Tsunashima, J. Electrochem. Soc. 2017, 164, H5230.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  R. Kazama, M. Matsumiya, N. Tsuda, K. Tsunashima, Electrochim. Acta 2013, 113, 269.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  M. Matsumiya, Electrodeposition of Rare Earth Metal in Ionic Liquids 2016 (Springer Verlag: Berlin).

[24]  H. Yoon, G. H. Lane, Y. Shekibi, P. C. Howlett, M. Forsyth, A. S. Best, D. R. MacFarlane, Energy Environ. Sci. 2013, 6, 979.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  T. J. Simons, D. R. Macfarlane, M. Forsyth, P. C. Howlett, ChemElectroChem 2014, 1, 1688.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  M. Kar, B. Winther-Jensen, M. Forsyth, D. R. MacFarlane, Phys. Chem. Chem. Phys. 2013, 15, 7191.
         | Crossref | GoogleScholarGoogle Scholar | 23558696PubMed |

[27]  M. Kar, B. Winther-Jensen, M. Armand, T. J. Simons, O. Winther-Jensen, M. Forsyth, D. R. MacFarlane, Electrochim. Acta 2016, 188, 461.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  A. Basile, M. Hilder, F. Makhlooghiazad, C. Pozo-Gonzalo, D. R. MacFarlane, P. C. Howlett, M. Forsyth, Adv. Energy Mater. 2018, 8, 1703491.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M. Forsyth, M. Hilder, Y. Zhang, F. Chen, L. Carre, D. A. Rakov, M. Armand, D. R. Macfarlane, C. Pozo-Gonzalo, P. C. Howlett, ACS Appl. Mater. Interfaces 2019, 11, 43093.
         | Crossref | GoogleScholarGoogle Scholar | 31701752PubMed |

[30]  N. M. Rocher, E. I. Izgorodina, T. Rüther, M. Forsyth, D. R. MacFarlane, T. Rodopoulos, M. D. Horne, A. M. Bond, Chem. – Eur. J. 2009, 15, 3435.
         | Crossref | GoogleScholarGoogle Scholar | 19132700PubMed |

[31]  A. P. Abbott, G. Frisch, K. S. Ryder, Annu. Rev. Mater. Res. 2013, 43, 335.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  Y. Zhao, T. J. VanderNoot, Electrochim. Acta 1997, 42, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  G. M. A. Girard, M. Hilder, H. Zhu, D. Nucciarone, K. Whitbread, S. Zavorine, Phys. Chem. Chem. Phys. 2015, 17, 8706.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  S. A. Ferdousi, M. Hilder, A. Basile, H. Zhu, L. A. O’Dell, D. Saurel, T. Rojo, M. Armand, M. Forsyth, P. C. Howlett, ChemSusChem 2019, 12, 1700.
         | Crossref | GoogleScholarGoogle Scholar | 30740908PubMed |

[35]  P. D. Schumacher, J. L. Doyle, J. O. Schenk, S. B. Clark, Rev. Anal. Chem. 2013, 32, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  S. Legeai, S. Diliberto, N. Stein, C. Boulanger, J. Estager, N. Papaiconomou, M. Draye, Electrochem. Commun. 2008, 10, 1661.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  M. Matsumiya, M. Ishii, R. Kazama, S. Kawakami, Electrochim. Acta 2014, 146, 371.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  A. Kurachi, M. Matsumiya, K. Tsunashima, S. Kodama, J. Appl. Electrochem. 2012, 42, 961.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  X. Yang, L. He, S. Qin, G. H. Tao, M. Huang, Y. Lv, PLoS One 2014, 9, e95832.
         | Crossref | GoogleScholarGoogle Scholar | 25541693PubMed |

[40]  R. Al-Salman, M. Al Zoubi, F. Endres, J. Mol. Liq. 2011, 160, 114.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  F. Endres, O. Höfft, N. Borisenko, L. H. Gasparotto, A. Prowald, R. Al-Salman, T. Carstens, R. Atkin, A. Bund, S. Z. El Abedin, Phys. Chem. Chem. Phys. 2010, 12, 1724.
         | Crossref | GoogleScholarGoogle Scholar | 20145836PubMed |

[42]  A. Lahiri, G. Pulletikurthi, F. Endres, Front Chem. 2019, 7, 85.
         | Crossref | GoogleScholarGoogle Scholar | 30842942PubMed |