Host-Guest Inclusion Systems of Morin Hydrate and Quercetin with Two Bis(β-cyclodextrin)s: Preparation, Characterization, and Antioxidant Activity
Li-Juan Zhao A , Song-Lin Yang A C , Wen Jin A , Hui-Wen Yang A , Fei-Yang Li A , Shao-Ming Chi A , Hong-You Zhu B , Ze Lei B and Yan Zhao A DA College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
B Guangdong Gusheng Pharmaceutical Technology Co., Ltd, Shantou 515098, China.
C This author contributed to the work equally and should be regarded as co-first author.
D Corresponding author. Email: zhaooyann@163.com
Australian Journal of Chemistry 72(6) 440-449 https://doi.org/10.1071/CH18580
Submitted: 29 November 2018 Accepted: 11 February 2019 Published: 12 March 2019
Abstract
The inclusion complexation behaviour of morin hydrate (MH) and quercetin (QCT) with the two amide-bridged bis(β-cyclodextrin (β-CD))s, 1 and 2, was investigated in both solution and the solid state. The inclusion complexations were characterised by proton nuclear magnetic resonance, 2D rotating-frame Overhauser effect spectroscopy, X-ray powder diffraction, infrared spectroscopy and scanning electron microscopy. Ultraviolet titration analysis indicated that 1 and 2 form 1 : 1 molar stoichiometry inclusion complexes with MH and QCT, and the data obtained showed that 2 with two guests has a higher complex stability constant (KS) when compared with that of 1. Moreover, 1 and 2 were able to solubilize MH and QCT to high levels, up to ~200-fold. Furthermore, the antioxidant activity of MH, QCT and their inclusion compounds were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. Together, these results showed that the inclusion complexes exhibited a more effective antioxidant activity when compared with free MH. The satisfactory antioxidant activity and high water solubility of the bis(β-CD)s/flavonoid complexes may have potential use as healthcare products and herbal medicine.
References
[1] C. Ban, S. J. Park, S. Lim, S. J. Choi, Y. J. Choi, J. Agric. Food Chem. 2015, 63, 5266.| Crossref | GoogleScholarGoogle Scholar | 25976277PubMed |
[2] J. D. Xu, L. W. Zhang, Y. F. Liu, Chin. Chem. Lett. 2013, 24, 223.
| Crossref | GoogleScholarGoogle Scholar |
[3] F. Perez-Vizcaino, C. G. Fraga, Arch. Biochem. Biophys. 2018, 646, 107.
| Crossref | GoogleScholarGoogle Scholar | 29580946PubMed |
[4] S. L. Hwang, P. H. Shih, G. C. Yen, J. Agric. Food Chem. 2012, 60, 877.
| Crossref | GoogleScholarGoogle Scholar | 22224368PubMed |
[5] A. Masek, M. Latos, M. Piotrowska, M. Zaborski, Food Packag. Shelf Life 2018, 16, 51.
| Crossref | GoogleScholarGoogle Scholar |
[6] L. G. Naso, L. Lezama, T. Rojo, S. B. Etcheverry, M. Valcarcel, M. Roura, C. Salado, E. G. Ferrer, P. A. M. Williams, Chem. Biol. Interact. 2013, 206, 289.
| Crossref | GoogleScholarGoogle Scholar | 24125835PubMed |
[7] F. Ren, K. Reilly, J. P. Kerry, M. Gaffney, M. Hossain, D. K. Rai, J. Agric. Food Chem. 2017, 65, 5122.
| Crossref | GoogleScholarGoogle Scholar | 28612608PubMed |
[8] M. Lesjak, I. Beara, N. Simin, D. Pintać, T. Majkić, K. Bekvalac, D. Orčić, N. Mimica-Dukić, J. Funct. Foods 2018, 40, 68.
| Crossref | GoogleScholarGoogle Scholar |
[9] K. Grzelak-Błaszczyk, J. Milala, M. Kosmala, K. Kołodziejczyk, M. Sójka, A. Czarnecki, R. Klewicki, J. Juśkiewicz, B. Fotschki, A. Jurgoński, J. Nutr. Biochem. 2018, 56, 81.
| Crossref | GoogleScholarGoogle Scholar | 29518727PubMed |
[10] M. Dixon, J. Woodrick, S. Gupta, S. K. Karmahapatra, S. Devito, S. Vasudevan, S. Dakshanamurthy, S. Adhikari, V. M. Yenugonda, R. Roy, Bioorg. Med. Chem. 2015, 23, 1102.
| Crossref | GoogleScholarGoogle Scholar | 25650313PubMed |
[11] Z. Aytac, S. Ipek, E. Durgun, T. Uyar, J. Mater. Sci. 2018, 53, 1527.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. Pérez-Abril, C. Lucas-Abellán, J. Castillo-Sánchez, H. Pérez-Sánchez, J. P. Cerón-Carrasco, I. Fortea, J. A. Gabaldón, E. Núñez-Delicado, J. Funct. Foods 2017, 36, 122.
| Crossref | GoogleScholarGoogle Scholar |
[13] H. Zhang, M. Wang, L. Chen, Y. Liu, H. Liu, H. Huo, L. Sun, X. Ren, Y. Deng, A. Qi, J. Mol. Liq. 2017, 225, 439.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. Yu, Y. Chen, J. J. Li, Y. Liu, J. Mater. Chem. C 2017, 5, 799.
| Crossref | GoogleScholarGoogle Scholar |
[15] W. Sun, Z. H. Wang, M. Y. She, Chin. Chem. Lett. 2016, 27, 1077.
| Crossref | GoogleScholarGoogle Scholar |
[16] Y.-C. Yang, S.-M. Chi, M.-H. Liu, R. Huang, Y.-F. Wang, B. Jing, Y. Zhao, Can. J. Chem. 2010, 88, 1205.
| Crossref | GoogleScholarGoogle Scholar |
[17] Y. Chen, Y. Liu, Adv. Mater. 2015, 27, 5403.
| Crossref | GoogleScholarGoogle Scholar | 26270410PubMed |
[18] Y. Zhao, X.-Q. Liu, J. Gu, L.‐Q. Wang, H.‐Y. Zhu, R. Huang, Y.‐F. Wang, Z.‐M. Yang, J. Phys. Org. Chem. 2008, 21, 440.
| Crossref | GoogleScholarGoogle Scholar |
[19] J. Gu, S. M. Chi, Y. Zhao, P. Zheng, Q. Ruan, Y. Zhao, H.‐Y. Zhu, Helv. Chim. Acta 2011, 94, 1608.
| Crossref | GoogleScholarGoogle Scholar |
[20] Y. Liu, Y. Chen, S. X. Liu, X.-D. Guan, T. Wada, Y. Inoue, Org. Lett. 2001, 3, 1657.
| Crossref | GoogleScholarGoogle Scholar | 11405679PubMed |
[21] Y. Liu, G. S. Chen, Y. Chen, D.-X. Cao, Z.-Q. Ge, Y.-J. Yuan, Bioorg. Med. Chem. 2004, 12, 5767.
| Crossref | GoogleScholarGoogle Scholar | 15498653PubMed |
[22] J. G. Moser, I. Rose, B. Wagner, T. Wieneke, A. Vervoorts, J. Inclusion Phenom. Macrocyclic Chem. 2001, 39, 13.
| Crossref | GoogleScholarGoogle Scholar |
[23] K. Yoshikiyo, H. Ohta, Y. Matsui, T. Yamamoto, Y. Okabe, J. Mol. Struct. 2008, 891, 420.
| Crossref | GoogleScholarGoogle Scholar |
[24] R. C. Petter, J. S. Salek, C. T. Sikorski, J. Am. Chem. Soc. 1990, 112, 3860.
| Crossref | GoogleScholarGoogle Scholar |
[25] J. H. Coates, C. J. Easton, S. J. van Eyk, S. F. Lincoln, B. L. May, C. B. Whalland, M. L. Williams, J. Chem. Soc., Perkin Trans. 1 1990, 2619.
| Crossref | GoogleScholarGoogle Scholar |
[26] C. A. Haskard, C. J. Easton, B. L. May, S. F. Lincoln, J. Phys. Chem. 1996, 100, 14457.
| Crossref | GoogleScholarGoogle Scholar |
[27] F. Natella, M. Nardini, C. Scaccini, J. Agric. Food Chem. 1999, 47, 1453.
| Crossref | GoogleScholarGoogle Scholar | 10563998PubMed |
[28] A. Dimitrios, S. R. Diamantis, M. Christos, Biochim. Biophys. Acta, Gen. Subj. 2018, 9, 1913.
[29] T. F. Kellici, M. V. Chatziathanasiadou, D. Diamantis, A. V. Chatzikonstantinou, I. Andreadelis, E. Christodoulou, G. Valsami, T. Mavromoustakos, A. G. Tzakos, Int. J. Pharm. 2016, 511, 303.
| Crossref | GoogleScholarGoogle Scholar | 27395802PubMed |
[30] H. A. Benesi, J. H. Hildebrand, J. Am. Chem. Soc. 1949, 71, 2703.
| Crossref | GoogleScholarGoogle Scholar |
[31] P. S. Santos, L. K. M. Sousa, T. S. L. Araújo, J. V. R. Medeiros, S. C. C. Nunes, R. A. Carvalho, A. C. C. Pais, F. J. B. Veiga, L. C. C. Nunes, A. Figueiras, ACS Omega 2017, 2, 9080.
| Crossref | GoogleScholarGoogle Scholar | 30023600PubMed |
[32] X.-R. Zhang, L. Zhang, J. Mol. Struct. 2017, 1137, 328.
| Crossref | GoogleScholarGoogle Scholar |
[33] H. Pu, Q. Sun, P. Tang, L. Zhao, Q. Li, Y. Liu, H. Li, Food Chem. 2018, 260, 183.
| Crossref | GoogleScholarGoogle Scholar | 29699660PubMed |
[34] N. G. Baydar, G. Özkan, S. Yasar, Food Control 2007, 18, 1131.
| Crossref | GoogleScholarGoogle Scholar |
[35] J. Yang, J. Guo, J. Yuan, Lebensm. Wiss. Technol. 2008, 41, 1060.
| Crossref | GoogleScholarGoogle Scholar |
[36] M. Liu, L. Dong, A. Che, Y. Zheng, D. Sun, X. Wang, B. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 115, 854.
| Crossref | GoogleScholarGoogle Scholar | 23892509PubMed |