One-Pot Synthesis of Core–Shell Structured Metal–Organic Coordination Polymer Microspheres with a Hierarchical Microporous–Mesoporous–Macroporous Structure
Yafang Zhou A , Yingxi Xu A , Jianyu Guo A C , Siyong Zhang A C and Yan Lu B CA Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.
B School of Engineering and Innovation, Shanghai Institute of Technology, Shanghai 201418, China.
C Corresponding authors. Email: gjychem@163.com; zsy515@shnu.edu.cn; luyanchem@163.com
Australian Journal of Chemistry 72(6) 450-459 https://doi.org/10.1071/CH18558
Submitted: 9 November 2018 Accepted: 13 February 2019 Published: 26 March 2019
Abstract
New core–shell structured metal–organic coordination polymer (CP) microspheres with a hierarchical microporous–mesoporous–macroporous structure are synthesized by a one-pot template-free method. The ligand L with a Schiff-base functional group is obtained by reacting 3-hydroxy-4-aminobenzoic acid with para-benzaldehyde. The coordination polymer microspheres (Zn-L-CP) are obtained by mixing the ligand L and zinc nitrate hexahydrate together under hydrothermal conditions. The resultant coordination polymer microspheres with a core–shell structure are characterized by FT-IR and solid state NMR spectroscopy, transmission and scanning electron microscopy, and nitrogen adsorption–desorption measurements. The obtained Zn-L-CP microspheres are proved to be effective heterogeneous catalysts for the deacetylation reaction with the merits of easy recycling and stability. The yield is 96 % when using methanol as solvent, and the yield can remain at 90 % after seven cycles.
References
[1] M. Mohammadikish, K. Zamani, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 205, 193.| Crossref | GoogleScholarGoogle Scholar | 30015025PubMed |
[2] S.-H. Choi, A. I. Gopalan, J.-H. Ryu, K.-P. Lee, Mater. Chem. Phys. 2010, 120, 18.
| Crossref | GoogleScholarGoogle Scholar |
[3] M. M. de Villiers, D. P. Otto, S. J. Strydom, Y. M. Lvov, Adv. Drug Deliv. Rev. 2011, 63, 701.
| Crossref | GoogleScholarGoogle Scholar | 21699936PubMed |
[4] A. Abbaspourrad, N. J. Carroll, S.-H. Kim, D. A. Weitz, J. Am. Chem. Soc. 2013, 135, 7744.
| Crossref | GoogleScholarGoogle Scholar | 23607271PubMed |
[5] S. Zhang, Y. Zhou, W. Nie, L. Song, T. Zhang, Ind. Eng. Chem. Res. 2012, 51, 14099.
| Crossref | GoogleScholarGoogle Scholar |
[6] Y. Lv, Z. Lin, F. Svec, Anal. Chem. 2012, 84, 8457.
| Crossref | GoogleScholarGoogle Scholar | 22998108PubMed |
[7] S. I. Ali, J. P. A. Heuts, A. M. van Herk, Soft Matter 2011, 7, 5382.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. Mohammadikish, M. Talebi, Mater. Res. Express 2017, 4, 115005.
| Crossref | GoogleScholarGoogle Scholar |
[9] S. Proch, J. Herrmannsdörfer, R. Kempe, C. Kern, A. Jess, L. Seyfarth, J. Senker, Chem. Eur. J. 2008, 14, 8204.
| Crossref | GoogleScholarGoogle Scholar | 18666269PubMed |
[10] M. Mohammadikish, K. Zamani, Adv. Powder Technol. 2018, 29, 2813.
| Crossref | GoogleScholarGoogle Scholar |
[11] M. L. Foo, R. Matsuda, S. Kitagawa, Chem. Mater. 2014, 26, 310.
| Crossref | GoogleScholarGoogle Scholar |
[12] P. Hu, J. V. Morabito, C.-K. Tsung, ACS Catal. 2014, 4, 4409.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, D. A. Weitz, Science 2002, 298, 1006.
| Crossref | GoogleScholarGoogle Scholar | 12411700PubMed |
[14] R. A. Caruso, J. H. Schattka, A. Greiner, Adv. Mater. 2001, 13, 1577.
| Crossref | GoogleScholarGoogle Scholar |
[15] V. Valtchev, Chem. Mater. 2002, 14, 956.
| Crossref | GoogleScholarGoogle Scholar |
[16] L. Qi, J. Li, J. Ma, Adv. Mater. 2002, 14, 300.
| Crossref | GoogleScholarGoogle Scholar |
[17] Q. Peng, Y. Dong, Y. Li, Angew. Chem. Int. Ed. 2003, 42, 3027.
| Crossref | GoogleScholarGoogle Scholar |
[18] H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, Y. Lu, J. Am. Chem. Soc. 2007, 129, 8406.
| Crossref | GoogleScholarGoogle Scholar | 17571890PubMed |
[19] F.-L. Li, H.-X. Li, J.-P. Lang, CrystEngComm 2016, 18, 1760.
| Crossref | GoogleScholarGoogle Scholar |
[20] J. T. A. Jones, T. Hasell, X. Wu, J. Bacsa, K. E. Jelfs, M. Schmidtmann, S. Y. Chong, D. J. Adams, A. Trewin, F. Schiffman, F. Cora, B. Slater, A. Steiner, G. M. Day, A. I. Cooper, Nature 2011, 474, 367.
| Crossref | GoogleScholarGoogle Scholar |
[21] M. Mastalerz, M. W. Schneider, I. M. Oppel, O. Presly, Angew. Chem. Int. Ed. 2011, 50, 1046.
| Crossref | GoogleScholarGoogle Scholar |
[22] Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, W. Zhang, J. Am. Chem. Soc. 2011, 133, 6650.
| Crossref | GoogleScholarGoogle Scholar | 21473590PubMed |
[23] F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klöck, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 4570.
| Crossref | GoogleScholarGoogle Scholar | 19281246PubMed |
[24] F. J. Uribe-Romo, C. J. Doonan, H. Furukawa, K. Oisaki, O. M. Yaghi, J. Am. Chem. Soc. 2011, 133, 11478.
| Crossref | GoogleScholarGoogle Scholar | 21721558PubMed |
[25] S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki, J. F. Stoddart, O. M. Yaghi, Chem. Mater. 2011, 23, 4094.
| Crossref | GoogleScholarGoogle Scholar |
[26] M. G. Schwab, B. Fassbender, H. W. Spiess, A. Thomas, X. Feng, K. Müllen, J. Am. Chem. Soc. 2009, 131, 7216.
| Crossref | GoogleScholarGoogle Scholar | 19469570PubMed |
[27] R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810.
| Crossref | GoogleScholarGoogle Scholar | 21863792PubMed |
[28] E. Preis, C. Widling, G. Brunklaus, J. Schmidt, A. Thomas, U. Scherf, ACS Macro Lett. 2013, 2, 380.
| Crossref | GoogleScholarGoogle Scholar |
[29] L. Canali, D. C. Sherrington, Chem. Soc. Rev. 1999, 28, 85.
| Crossref | GoogleScholarGoogle Scholar |
[30] T. Katsuki, Coord. Chem. Rev. 1995, 140, 189.
| Crossref | GoogleScholarGoogle Scholar |
[31] S. Sellarajah, T. Lekishvili, C. Bowring, A. R. Thompsett, H. Rudyk, C. R. Birkett, D. R. Brown, I. H. Gilbert, J. Med. Chem. 2004, 47, 5515.
| Crossref | GoogleScholarGoogle Scholar | 15481988PubMed |
[32] C. I. Ezugwu, B. Mousavi, M. A. Asraf, Z. Luo, F. Verpoort, J. Catal. 2016, 344, 445.
| Crossref | GoogleScholarGoogle Scholar |
[33] M. Khorshidifard, H. Amiri Rudbari, Z. Kazemi-Delikani, V. Mirkhani, R. Azadbakht, J. Mol. Struct. 2015, 1081, 494.
| Crossref | GoogleScholarGoogle Scholar |
[34] M. Khorshidifard, H. A. Rudbari, B. Askari, M. Sahihi, M. R. Farsani, F. Jalilian, G. Bruno, Polyhedron 2015, 95, 1.
| Crossref | GoogleScholarGoogle Scholar |
[35] A. Ghaffari, M. Behzad, M. Pooyan, H. Amiri Rudbari, G. Bruno, J. Mol. Struct. 2014, 1063, 1.
| Crossref | GoogleScholarGoogle Scholar |
[36] S. Menati, H. Amiri Rudbari, B. Askari, M. Riahi Farsani, F. Jalilian, G. Dini, C. R. Chim. 2016, 19, 347.
| Crossref | GoogleScholarGoogle Scholar |
[37] U. H. F. Bunz, K. Seehafer, F. L. Geyer, M. Bender, I. Braun, E. Smarsly, J. Freudenberg, Macromol. Rapid Commun. 2014, 35, 1466.
| Crossref | GoogleScholarGoogle Scholar |
[38] X. Li, S. Yang, J. Sun, P. He, X. Xu, G. Ding, Carbon 2014, 78, 38.
| Crossref | GoogleScholarGoogle Scholar |
[39] N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 1504.
| Crossref | GoogleScholarGoogle Scholar | 15686384PubMed |
[40] M. Mohammadikish, M. Talebi, Powder Technol. 2017, 313, 169.
| Crossref | GoogleScholarGoogle Scholar |
[41] Z. Zhang, H. Che, Y. Wang, J. Gao, Y. Ping, Z. Zhong, F. Su, Chem. Eng. J. 2012, 211–212, 421.
| Crossref | GoogleScholarGoogle Scholar |
[42] Z. Z. Liu, W. W. Zhou, S. S. Wang, W. Du, H. L. Zhang, C. Y. Ding, Y. Du, L. J. Zhu, J. Alloys Compd. 2019, 774, 137.
| Crossref | GoogleScholarGoogle Scholar |