Numerical Simulation of the Droplet Formation in a T-Junction Microchannel by a Level-Set Method
Wenbo Han A and Xueye Chen A BA Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou 121001, China.
B Corresponding author. Email: xueye_chen@126.com
Australian Journal of Chemistry 71(12) 957-964 https://doi.org/10.1071/CH18320
Submitted: 4 July 2018 Accepted: 4 October 2018 Published: 23 October 2018
Abstract
To satisfy the increasingly high demands in many applications of microfluidics, the size of the droplet needs accurate control. In this paper, a level-set method provides a useful method for studying the physical mechanism and potential mechanism of two-phase flow. A detailed three-dimensional numerical simulation of microfluidics was carried out to systematically study the generation of micro-droplets and the effective diameter of droplets with different control parameters such as the flow rate ratio, the continuous phase viscosity, the interfacial tension, and the contact angle. The effect of altering the pressure at the x coordinate of the main channel during the droplet formation was analysed. As the simulation results show, the above control parameters have a great influence on the formation of droplets and the size of the droplet. The effective droplet diameter increases when the flow rate ratio and the interfacial tension increase. It decreases when the continuous phase viscosity and the contact angle increase.
References
[1] P. Zhu, L. Wang, Lab Chip 2017, 17, 34.| Crossref | GoogleScholarGoogle Scholar |
[2] Y. Zhu, Q. Fang, Anal. Chim. Acta 2013, 787, 24.
| Crossref | GoogleScholarGoogle Scholar |
[3] H. D. Xi, H. Zheng, W. Guo, A. M. Gañán-Calvo, Y. Ai, C.-W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyenh, S. H. Tan, Lab Chip 2017, 17, 751.
| Crossref | GoogleScholarGoogle Scholar |
[4] X. Chen, C. Liu, Z. Xu, Y. Pan, J. Liu, L. Du, Microsyst. Technol. 2013, 19, 99.
| Crossref | GoogleScholarGoogle Scholar |
[5] C. G. Yang, Z. R. Xu, J. H. Wang, TrAC Trends Anal. Chem. 2010, 29, 141.
| Crossref | GoogleScholarGoogle Scholar |
[6] S. Zeng, X. Pan, Q. Zhang, B. Lin, J. Qin, Anal. Chem. 2011, 83, 2083.
| Crossref | GoogleScholarGoogle Scholar |
[7] X. T. Sun, M. Liu, Z. R. Xu, Talanta 2014, 121, 163.
| Crossref | GoogleScholarGoogle Scholar |
[8] L. Hou, Y. Ren, Y. Jia, X. Deng, W. Liu, X. Feng, H. Jiang, ACS Appl. Mater. Interfaces 2017, 9, 12282.
| Crossref | GoogleScholarGoogle Scholar |
[9] Q. Fang, X. T. Shi, W. B. Du, Q. H. He, H. Shen, Z. L. Fang, TrAC Trends Anal. Chem. 2008, 27, 521.
| Crossref | GoogleScholarGoogle Scholar |
[10] Y. Shu, P. Jiang, D. W. Pang, Z. L. Zhang, Nanotechnology 2015, 26, 275701.
| Crossref | GoogleScholarGoogle Scholar |
[11] S. Mashaghi, A. Abbaspourrad, D. A. Weitz, S. Mashaghi, A. Abbaspourrad, D. A. Weitz, A. M. van Oijen, TrAC Trends Anal. Chem. 2016, 82, 118.
[12] Q. Chen, S. Utech, D. Chen, R. Prodanovic, J.-M. Lin, D. A. Weitz, Lab Chip 2016, 16, 1346.
| Crossref | GoogleScholarGoogle Scholar |
[13] X. Wang, L. Ren, Y. Su, X. Wang, L. Ren, Y. Su, Y. Ji, Y. Liu, C. Li, X. Li, Y. Zhang, W. Wang, Q. Hu, D. Han, J. Xu, B. Ma, Anal. Chem. 2017, 89, 12569.
[14] Z. Zhu, C. J. Yang, Acc. Chem. Res. 2017, 50, 22.
| Crossref | GoogleScholarGoogle Scholar |
[15] P. Zhu, T. Kong, X. Tang, L. Wang, Nat. Commun. 2017, 8, 15823.
| Crossref | GoogleScholarGoogle Scholar |
[16] N. Wu, F. Courtois, R. Surjadi, J. Oakeshott, T. S. Peat, C. J. Easton, C. Abell, Y. Zhu, Eng. Life Sci. 2011, 11, 157.
| Crossref | GoogleScholarGoogle Scholar |
[17] X. Leng, W. Zhang, C. Wang, L. Cui, C. J. Yang, Lab Chip 2010, 10, 2841.
| Crossref | GoogleScholarGoogle Scholar |
[18] J. D. Wehking, M. Gabany, L. Chew, R. Kumar, Microfluid. Nanofluidics 2014, 16, 441.
| Crossref | GoogleScholarGoogle Scholar |
[19] P. Zhu, X. Tang, L. Wang, Microfluid. Nanofluidics 2016, 20, 47.
| Crossref | GoogleScholarGoogle Scholar |
[20] T. Si, F. Li, X. Y. Yin, X. Z. Yin, J. Fluid Mech. 2009, 629, 1.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. S. Abdul Keyon, R. M. Guijt, C. J. Bolch, M. C. Breadmore, Anal. Chem. 2014, 86, 11811.
| Crossref | GoogleScholarGoogle Scholar |
[22] X. Zeng, R. Yue, J. Wu, H. Hu, L. Dong, Z. Wang, F. He, L. Liu, Sci. China Ser. E: Technol. Sci. 2006, 49, 248.
| Crossref | GoogleScholarGoogle Scholar |
[23] G. Liu, X. Wang, K. Wang, C. P. Tostado, G. Luo, Int. J. Multiph. Flow 2016, 80, 188.
| Crossref | GoogleScholarGoogle Scholar |
[24] T. Thorsen, R. W. Roberts, F. H. Arnold, S. R. Quake, Phys. Rev. Lett. 2001, 86, 4163.
| Crossref | GoogleScholarGoogle Scholar |
[25] T. Nisisako, T. Torii, T. Higuchi, Lab Chip 2002, 2, 24.
| Crossref | GoogleScholarGoogle Scholar |
[26] P. Garstecki, M. J. Fuerstman, H. A. Stone, G. M. Whitesides, Lab Chip 2006, 6, 437.
| Crossref | GoogleScholarGoogle Scholar |
[27] C. Cramer, P. Fischer, E. J. Windhab, Chem. Eng. Sci. 2004, 59, 3045.
| Crossref | GoogleScholarGoogle Scholar |
[28] S. van der Graaf, T. Nisisako, C. G. P. H. Schroen, R. G. M. van der Sman, R. M. Boom, Langmuir 2006, 22, 4144.
| Crossref | GoogleScholarGoogle Scholar |
[29] J. H. Xu, S. W. Li, J. Tan, Y. J. Wang, G. S. Luo, AIChE J. 2006, 52, 3005.
| Crossref | GoogleScholarGoogle Scholar |
[30] B. Gol, F. J. Tovar-Lopez, M. E. Kurdzinski, S.-Y. Tang, P. Petersen, A. Mitchell, K. Khoshmanesh, Lab Chip 2015, 15, 2476.
| Crossref | GoogleScholarGoogle Scholar |
[31] H. Shen, Q. Fang, Z. L. Fang, Lab Chip 2006, 6, 1387.
| Crossref | GoogleScholarGoogle Scholar |
[32] B. Gol, M. E. Kurdzinski, F. J. Tovar-Lopez, P. Petersen, A. Mitchell, K. Khoshmanesh, Appl. Phys. Lett. 2016, 108, 164101.
| Crossref | GoogleScholarGoogle Scholar |
[33] E. Olsson, G. Kreiss, J. Comput. Phys. 2005, 210, 225.
| Crossref | GoogleScholarGoogle Scholar |
[34] E. Olsson, G. Kreiss, S. Zahedi, J. Comput. Phys. 2007, 225, 785.
| Crossref | GoogleScholarGoogle Scholar |