Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

C60 as Electron Acceptor and Donor: A Comparative DFT Study of Li@C60 and F@C60

Ambrish Kumar Srivastava A , Sarvesh Kumar Pandey B E , Anoop Kumar Pandey C and Neeraj Misra D
+ Author Affiliations
- Author Affiliations

A Department of Physics, Deen Dayal Upadhyaya (DDU) Gorakhpur University, Gorakhpur 273009, India.

B Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.

C Department of Physics, Government Degree College, Bishrampur 497226, India.

D Department of Physics, University of Lucknow, Lucknow 226007, India.

E Corresponding author. Email: spsarvesh22@gmail.com

Australian Journal of Chemistry 71(12) 953-956 https://doi.org/10.1071/CH18391
Submitted: 6 August 2018  Accepted: 1 October 2018   Published: 23 October 2018

Abstract

Fullerene (C60) is a stable prototype system for a special class of nanomaterials. In this work, the smallest alkali metal (Li) and halogen (F) atoms were encapsulated in the C60 cage, and comparative quantum chemical calculations (QCCs) were performed on their various properties using a density functional theory approach. It was noted that the off-centre distance of Li is higher than that of F. The QCCs of the charge transfer to and from C60 were also analysed. Although charge transfer to and from the C60 cage takes place in both cases, Li@C60 becomes more polar than F@C60, suggesting a better electron-accepting nature of C60 than electron-donating behaviour. This fact is consistent with the natural bond orbital (NBO) charge on the trapped atoms and the dipole moment as well as the binding energy values of the encapsulated C60. Although the encapsulation of both atoms reduces the frontier orbital energy gap, the frontier orbital gap of Li@C60 is smaller than that of F@C60. More interestingly, the depression in the polarizability of Li@C60 is significantly large relative to that of F@C60. These findings also support the tendency of C60 to act as electron acceptor. This study provides some insights into the fundamental properties of C60 and should be helpful in designing new endofullerene complexes for a variety of applications.


References

[1]  H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  S. Iijima, J. Cryst. Growth 1980, 50, 675.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Y. Chai, T. Guo, C. M. Jin, R. E. Haufler, L. P. F. Chibante, J. Fure, L. H. Wang, J. M. Alford, R. E. Smalley, J. Phys. Chem. 1991, 95, 7564.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  J. R. Heath, S. C. O’Brien, Q. Zhang, Y. Liu, R. F. Curl, F. K. Tittel, R. E. Smalley, J. Am. Chem. Soc. 1985, 107, 7779.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  A. P. Ramirez, Physica C 2015, 514, 166.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  Y. Dong, D. Saini, L. A. Echegoyen, R. Podila, Opt. Mater. 2016, 53, 14.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  B. Liu, R. Q. Png, L. H. Zhao, L. L. Chua, R. H. Friend, P. K. Ho, Nat. Commun. 2012, 3, 1321.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M. N. Chaur, F. Melin, A. L. Ortiz, L. Echegoyen, Angew. Chem. Int. Ed. 2009, 48, 7514.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  J. Lu, W. N. Mei, Y. Gao, X. Zeng, M. Jing, G. Li, R. Sabirianov, Z. Gao, L. You, J. Xu, D. Yu, H. Ye, Chem. Phys. Lett. 2006, 425, 82.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  J. Lu, R. F. Sabirianov, W. N. Mei, Y. Gao, C. G. Duan, X. Zeng, J. Phys. Chem. B 2006, 110, 23637.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  H. Shinohara, H. Sato, Y. Saito, M. Ohkohchi, Y. Ando, J. Phys. Chem. 1992, 96, 3571.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  H. Shinohara, H. Yamaguchi, N. Hayashi, H. Sato, M. Ohkohchi, Y. Ando, Y. Saito, J. Phys. Chem. 1993, 97, 4259.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  R. Tellgmann, N. Krawez, S. H. Lin, I. V. Hertel, E. E. B. Campbell, Nature 1996, 382, 407.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  T. John, S. Dennis, H. Shinohara, Chem. Phys. Lett. 1997, 278, 107.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  B. Pietzak, M. Waiblinger, T. Almeida Murphy, A. Weidinger, M. Hoehne, E. Dietel, A. Hirsch, Chem. Phys. Lett. 1997, 279, 259.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  A. K. Srivastava, S. K. Pandey, N. Misra, Chem. Phys. Lett. 2016, 662, 240.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  A. K. Srivastava, S. K. Pandey, N. Misra, Mater. Chem. Phys. 2016, 177, 437.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  R. C. Haddon, Pure Appl. Chem. 1993, 65, 11.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  N. Kurita, K. Kobayashi, H. Kumahora, K. Tago, K. Ozawa, Chem. Phys. Lett. 1992, 198, 95.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  J. R. Bowser, D. A. Jeleski, T. F. George, Inorg. Chem. 1992, 31, 154.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  S. H. Wang, F. Chen, Y. C. Fann, M. Kashani, M. Malaty, S. A. Jansen, J. Phys. Chem. 1995, 99, 6801.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  S. J. Zhoug, C. W. Liu, J. Mol. Struct. THEOCHEM 1997, 392, 125.

[23]  Z. Chen, X. Zhao, J. Phys. Chem. A 1999, 103, 10961.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  X. Yang, G. Wang, Z. Shang, Y. Pan, Z. Cai, X. Zhao, Phys. Chem. Chem. Phys. 2002, 4, 2546.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  A. Gromov, N. Krawez, A. Lassesson, D. I. Ostrovskii, E. E. B. Campbell, Curr. Appl. Phys. 2002, 2, 51.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  M. Pavanello, A. F. Jalbout, B. L. Trzaskowsk, Chem. Phys. Lett. 2007, 442, 339.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  Y. S. Li, D. Tománek, Chem. Phys. Lett. 1994, 221, 453.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  D. Tománek, Y. S. Li, Chem. Phys. Lett. 1995, 243, 42.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  N. Sadlej-Sosnowska, A. P. Mazurek, J. Chem. Inf. Model. 2012, 52, 1193.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  P. Delaney, J. C. Greer, Appl. Phys. Lett. 2004, 84, 431.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  J. Lu, X. Zhang, X. Zhao, Chem. Phys. Lett. 1999, 312, 85.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  J. Cioslowski, E. D. Fleischmann, J. Chem. Phys. 1991, 94, 3730.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C02 2010 (Gaussian, Inc.: Wallingford, CT).

[34]  A. D. Becke, Phys. Rev. A 1988, 38, 3098.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B Condens. Matter 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  C. Sikorska, T. Puzyn, Nanotechnology 2015, 26, 455702.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  A. K. Srivastava, S. K. Pandey, N. Misra, Chem. Phys. Lett. 2016, 655–656, 71.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  S.-J. Wang, Y. Li, Y.-F. Wang, D. Wu, Z.-R. Li, Phys. Chem. Chem. Phys. 2013, 15, 12903.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  A. K. Srivastava, A. Kumar, N. Misra, Physica E 2016, 84, 524.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  R. Antoine, P. Dugourd, D. Rayane, E. Benichou, M. Broyer, F. Chandezon, C. Guet, J. Chem. Phys. 1999, 110, 9771.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  A. L. Buchachenko, J. Phys. Chem. B 2001, 105, 5839.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  A. V. Marenich, C. J. Cramer, D. G. Truhlar, Chem. Sci. 2013, 4, 2349.
         | Crossref | GoogleScholarGoogle Scholar |