A Highly Sensitive and Label-Free Microbead-Based ‘Turn-On’ Colorimetric Sensor for the Detection of Mercury(ii) in Urine Using a Peroxidase-Like Split G-Quadruplex–Hemin DNAzyme
Xin Fu A , He Zhang A B , Jie Zhang A , Shi-Tong Wen A and Xing-Cheng Deng AA School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China.
B Corresponding author. Email: mzhang_he@126.com
Australian Journal of Chemistry 71(12) 945-952 https://doi.org/10.1071/CH18302
Submitted: 27 June 2018 Accepted: 26 September 2018 Published: 30 October 2018
Abstract
A highly sensitive and label-free microbead-based ‘turn-on’ assay was developed for the detection of Hg2+ in urine based on the Hg2+-mediated formation of intermolecular split G-quadruplex–hemin DNAzymes. In the presence of Hg2+, T–T mismatches between the two partial cDNA strands were stabilized by a T–Hg2+–T base pair, and can cause the G-rich sequences of the two oligonucleotides to associate to form a split G-quadruplex which is able to bind hemin to form the catalytically active G-quadruplex–hemin DNAzyme. This microbead-based ‘turn-on’ process allows the detection of Hg2+ in urine samples at concentrations as low as 0.5 pM. The relative standard deviation and recovery are 1.2–3.9 and 98.7–103.2 %, respectively. The remarkable sensitivity for Hg2+ is mainly attributed to the enhanced mass transport ability that is inherent in homogeneous microbead-based assays. Compared with previous developments of intermolecular split G-quardruplex–hemin DNAzymes for the homogeneous detection of Hg2+ (the limit of detection was 19 nM), a signal enhancement of ~1000 times is obtained when such an assay is performed on the surface of microbeads.
References
[1] E. M. Nolan, S. J. Lippard, Chem. Rev. 2008, 108, 3443.| Crossref | GoogleScholarGoogle Scholar |
[2] M. Leermakers, W. Baeyens, P. Quevauviller, M. Horvat, Trends Anal. Chem. 2005, 24, 383.
| Crossref | GoogleScholarGoogle Scholar |
[3] A. Ono, H. Togashi, Angew. Chem. Int. Ed. 2004, 43, 4300.
| Crossref | GoogleScholarGoogle Scholar |
[4] Y. Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, M. Kudo, Y. Tanaka, Y. Kondo, R. Sawa, T. Fujimoto, T. Machinami, A. Ono, J. Am. Chem. Soc. 2006, 128, 2172.
| Crossref | GoogleScholarGoogle Scholar |
[5] Y. Tanaka, S. Oda, H. Yamaguchi, Y. Kondo, C. Kojima, A. Ono, J. Am. Chem. Soc. 2007, 129, 244.
| Crossref | GoogleScholarGoogle Scholar |
[6] A. T. Phan, V. Kuryavyi, D. J. Patel, Curr. Opin. Struct. Biol. 2006, 16, 288.
| Crossref | GoogleScholarGoogle Scholar |
[7] S. Neidle, Curr. Opin. Struct. Biol. 2009, 19, 239.
| Crossref | GoogleScholarGoogle Scholar |
[8] P. Travascio, A. J. Bennet, D. Y. Wang, D. Sen, Chem. Biol. 1999, 6, 779.
| Crossref | GoogleScholarGoogle Scholar |
[9] P. Travascio, Y. Li, D. Sen, Chem. Biol. 1998, 5, 505.
| Crossref | GoogleScholarGoogle Scholar |
[10] Z. H. Hu, Y. H. Zhou, X. T. Xie, R. J. Jiang, N. N. Li, Anal. Sci. 2014, 30, 1039.
| Crossref | GoogleScholarGoogle Scholar |
[11] Y. Kan, C. Jiang, Q. Xi, X. Wang, L. Peng, J. Jiang, R. Yu, Anal. Sci. 2014, 30, 561.
| Crossref | GoogleScholarGoogle Scholar |
[12] T. Li, S. Dong, E. Wang, Anal. Chem. 2009, 81, 2144.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. Nakayama, H. O. Sintim, J. Am. Chem. Soc. 2009, 131, 10320.
| Crossref | GoogleScholarGoogle Scholar |
[14] C. Hu, I. Zeimpekis, K. Sun, S. Anderson, P. Ashburn, H. Morgan, Anal. Chem. 2016, 88, 4872.
| Crossref | GoogleScholarGoogle Scholar |
[15] K. L. Gunderson, F. J. Steemers, G. Lee, L. G. Mendoza, M. S. Chee, Nat. Genet. 2005, 37, 549.
| Crossref | GoogleScholarGoogle Scholar |
[16] M. Cohen, C. J. Fisher, M. L. Huang, L. L. Lindsay, M. Plancarte, W. M. Boyce, K. Godula, P. Gagneux, Virology 2016, 493, 128.
| Crossref | GoogleScholarGoogle Scholar |
[17] K. Qvortrup, T. E. Nielsen, Angew. Chem. Int. Ed. 2016, 55, 4472.
| Crossref | GoogleScholarGoogle Scholar |
[18] A. K. Price, A. B. MacConnell, B. M. Paegel, Anal. Chem. 2016, 88, 2904.
| Crossref | GoogleScholarGoogle Scholar |
[19] H. Miyachi, T. Matsui, Y. Shigeta, K. Hirao, Phys. Chem. Chem. Phys. 2010, 12, 909.
| Crossref | GoogleScholarGoogle Scholar |
[20] D. M. Kong, W. Yang, J. Wu, C. X. Li, H. X. Shen, Analyst 2010, 135, 321.
| Crossref | GoogleScholarGoogle Scholar |
[21] B. Liu, Y. Huang, X. Zhu, Y. Hao, Y. Ding, W. Wei, Q. Wang, P. Qu, M. Xu, Anal. Chim. Acta 2016, 912, 139.
| Crossref | GoogleScholarGoogle Scholar |
[22] S. Watanabe, K. Hagihara, K. Tsukagoshi, M. Hashimoto, Anal. Chem. 2014, 86, 900.
| Crossref | GoogleScholarGoogle Scholar |
[23] T. Li, B. Li, E. Wang, S. Dong, Chem. Commun. 2009, 3551.
| Crossref | GoogleScholarGoogle Scholar |
[24] T. Li, E. Wang, S. Dong, Chem. Commun. 2009, 5, 580.
| Crossref | GoogleScholarGoogle Scholar |
[25] X. Yang, C. Fang, H. Mei, T. Chang, Z. Cao, D. Shangguan, Chem. – Eur. J. 2011, 17, 14475.
| Crossref | GoogleScholarGoogle Scholar |
[26] D. M. Kong, N. Wang, X. X. Guo, H. X. Shen, Analyst 2010, 135, 545.
| Crossref | GoogleScholarGoogle Scholar |
[27] W. Zhang, Adv. Exp. Med. Biol. 2014, 811, 19.
| Crossref | GoogleScholarGoogle Scholar |
[28] P. She, Y. Chu, C. Liu, X. Guo, K. Zhao, J. Li, H. Du, X. Zhang, H. Wang, A. Deng, Anal. Chim. Acta 2016, 906, 139.
| Crossref | GoogleScholarGoogle Scholar |
[29] E. Fernández, L. Vidal, A. Costa-García, A. Canals, Anal. Chim. Acta 2016, 915, 49.
| Crossref | GoogleScholarGoogle Scholar |
[30] B. M. Fong, T. S. Siu, J. S. Lee, S. Tam, J. Anal. Toxicol. 2007, 31, 281.
| Crossref | GoogleScholarGoogle Scholar |
[31] D. Huang, C. Niu, X. Wang, X. Lv, G. Zeng, Anal. Chem. 2013, 85, 1164.
| Crossref | GoogleScholarGoogle Scholar |
[32] Q. L. Zhao, L. L. Liu, L. N. Yang, Z. Y. Zhang, Chin. J. Anal. Chem. 2014, 42, 683.