Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of Lanthanoid Complexes from Ln2O3 and Diatrizoic Acid

Guillaume Bousrez A , Philip C. Andrews B , Peter C. Junk A C , Dominique T. Thielemann B and Jun Wang A
+ Author Affiliations
- Author Affiliations

A College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.

B School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

C Corresponding author. Email: peter.junk@jcu.edu.au

Australian Journal of Chemistry 71(12) 939-944 https://doi.org/10.1071/CH18419
Submitted: 21 August 2018  Accepted: 20 September 2018   Published: 17 October 2018

Abstract

We present a pathway to synthesize diatrizoate lanthanoid complexes directly from Ln2O3 and diatrizoic acid (DTAH = 3,5-diacetamido-2,4,6-triiodobenzoic acid) at room temperature yielding [Ln(H2O)8][DTA]3 in moderate (for the heavier lanthanoids) to good (for the lighter lanthanoids) yields. Compounds were recrystallized from DMSO or water and their X-ray crystal structures were obtained. The complexes have metal centres solely coordinated by solvent molecules with no direct interaction between the metal centre and the DTA anion. The compounds crystallized from DMSO have the formulation [Ln(DMSO)4(H2O)4][DTA]3.DMSO (Ln = La, Nd, Sm, Eu, Dy; only unit cell data were confirmed for Ln = Nd, Sm) whereas the compound crystallized from water has the formulation [Dy(H2O)8][DTA]3.7H2O.


References

[1]  (a) M. Zimmermann, R. Anwander, Chem. Rev. 2010, 110, 6194.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. Schumann, J. A. Meese-Marktscheff, L. Esser, Chem. Rev. 1995, 95, 865.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. C. Mehrotra, P. N. Kapoor, J. M. Batwara, Coord. Chem. Rev. 1980, 31, 67.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) H. Dong, S.-R. Du, X.-Y. Zheng, G.-M. Lyu, L.-D. Sun, L.-D. Li, P.-Z. Zhang, C. Zhang, C.-H. Yan, Chem. Rev. 2015, 115, 10725.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. C. Heffern, L. M. Matosziuk, T. J. Meade, Chem. Rev. 2014, 114, 4496.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  K. Binnemans, Chem. Rev. 2009, 109, 4283.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) Y. Taniguchi, S. Tanaka, T. Kamura, Y. Fujiwara, Tetrahedron Lett. 1998, 39, 4559.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S.-Y. Onozawa, T. Sakakura, M. Tanaka, M. Shirot, Tetrahedron 1996, 52, 4291.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. L. Weidner, C. J. Barger, M. Delferro, T. L. Lohr, T. J. Marks, ACS Catal. 2017, 7, 1244.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Mei, D. J. Averill, M. J. Allen, J. Org. Chem. 2012, 77, 5624.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) T. R. Ramadhar, J.-I. Kawakami, A. J. Lough, R. A. Batey, Org. Lett. 2010, 12, 4446.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) G. Molander, Chem. Rev. 1992, 92, 29.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. A. Sloan, D. J. Procter, Chem. Soc. Rev. 2006, 35, 1221.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  R. C. Mehrotra, A. Singh, U. M. Tripathi, Chem. Rev. 1991, 91, 1287.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  A. de Bettencourt-Dias, P. S. Barber, S. Viswanathan, Coord. Chem. Rev. 2014, 273–274, 165.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) A. T. Wagner, P. W. Roesky, Eur. J. Inorg. Chem. 2016, 782.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) P. C. Andrews, G. Bousrez, P. C. Junk, D. T. Thielemann, M. V. Werrett, Eur. J. Inorg. Chem. 2017, 679.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. M. Shavaleev, R. Scopelliti, F. Gumy, J.-C. G. Bünzli, Eur. J. Inorg. Chem. 2008, 1523.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) A. Ouchi, Y. Suzuki, Y. Ohki, Y. Koizumi, Coord. Chem. Rev. 1988, 92, 29.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. W.-H. Lam, W.-T. Wong, S. Gao, G. Wen, X.-X. Zhang, Eur. J. Inorg. Chem. 2003, 149.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. P. Costes, J. M. Clemente‐Juan, F. Dahan, F. Nicodème, M. Verelst, Angew. Chem. Int. Ed. 2002, 41, 323.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Yan, Y. Guo, H. Li, X. Sun, Z. Wang, J. Mol. Struct. 2008, 891, 298.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) H. Bußkamp, G. B. Deacon, M. Hilder, P. C. Junk, U. H. Kynast, W. W. Lee, D. R. Turner, CrystEngComm 2007, 9, 394.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) G. B. Deacon, S. Hein, P. C. Junk, T. Jüstel, W. Lee, D. R. Turner, CrystEngComm 2007, 9, 1110.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  J. Singh, A. Daftary, J. Nucl. Med. Technol. 2008, 36, 69.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) W. Szmigielski, M. Klamut, Z. Siezieniewska, D. Chibowski, E. Korobowicz, B. Rubaj, T. Wolski, Z. Tynecka, Acta Radiol. 1991, 32, 415.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) W. Szmigielski, M. Klamut, M. Dahniya, S. Klonowski, F. Furmanik, K. Kupisz, O. Mahdi, Acta Radiol. 1991, 32, 467.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  L. E. Tønnesen, B. F. Pedersen, J. Klaveness, Acta Chem. Scand. 1996, 50, 603.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) C. Xie, B. Zhang, X. Wang, B. Yu, R. Wang, G. Shen, D. Shen, Z. Anorg. Allg. Chem. 2008, 634, 387.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) C.-M. Liu, M. Xiong, D.-Q. Zhang, M. Duc, D.-B. Zhu, Dalton Trans. 2009, 5666.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. Puentes, J. Torres, C. Kremer, J. Cano, F. Lloret, D. Capucci, A. Bacchi, Dalton Trans. 2016, 5356.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z. Weng, D. Liu, Z. Chen, H. Zou, S. Qin, F. Liang, Cryst. Growth Des. 2009, 9, 4163.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. Baggio, R. Calvo, M. T. Garland, O. Pena, M. Perec, A. Rizzi, Inorg. Chem. 2005, 44, 8979.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Y. Liu, Y. Zhang, G. H. Hu, S. Zhou, R. Fan, Y. Yang, Y. Xu, Chem. – Eur. J. 2015, 21, 10391.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) Y.-Q. Sun, J. Zhang, Y.-M. Chen, G.-Y. Yang, Angew. Chem. Int. Ed. 2005, 44, 5814.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) G. B. Deacon, W. Elgersma, R. Harika, P. C. Junk, B. W. Skelton, A. H. White, Can. J. Chem. 2009, 87, 121.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) X. Li, Q. Shi, D. Sun, W. Bi, R. Cao, Eur. J. Inorg. Chem. 2004, 2747.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Remington’s Pharmaceutical Sciences, 16th edn (Ed. A. Osol) 1980 (Mack Publishing Co.: Easton, PA).

[16]  T. M. McPhillips, S. E. McPhillips, H.-J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  W. Kabsch, J. Appl. Cryst. 1993, 26, 795.
         | Crossref | GoogleScholarGoogle Scholar |