Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

An Adeninate-Based Metal–Organic Framework for Antitumour Drug Delivery and Anti-Osteogenic Sarcoma Activity Evolution

Bing Yan A , Huanqiu Li B , Wenyan Jiang C and Long Mu A D
+ Author Affiliations
- Author Affiliations

A Department of Orthopedics, No. 5 Hospital of Harbin City, Harbin, Heilongjiang 150040, China.

B Department of Color Ultrasonic Room, No. 5 Hospital of Harbin City, Harbin, Heilongjiang 150040, China.

C Department of Orthopedics, Raohe County People’s Hospital, Shuangyashan, Heilongjiang 155700, China.

D Corresponding author. Email: long_mu666@126.com

Australian Journal of Chemistry 71(12) 978-982 https://doi.org/10.1071/CH18287
Submitted: 9 June 2018  Accepted: 17 October 2018   Published: 8 November 2018

Abstract

Targeted anticancer drug delivery systems (DDSs) have been considered as one of the most important approaches for reducing the side effects and enhancing the therapy effect in cancer treatment. This work presents a targeted anticancer DDS on the basis of a newly synthesised adeninate-based metal–organic framework (MOF) [Zn2(ad)2(AMDB)(H2O)](DMF)3 (1) with biomolecular adenine (HAd), zinc(ii) ions, and 4,4′-(aminomethylene)dibenzoic acid (H2AMDB) as the molecular building blocks. The structural analysis via X-ray diffraction technology shows MOF 1 is a channel-type three-dimensional network composed of rod-like Zn–Ad chains. Due to its large inner free spaces and uncoordinated N donor sites functionalised pore surroundings, the antitumour molecule 5-fluorouracil (5-Fu) could be loaded into the pores of 1a (activated 1) though an adsorption process, which shows a moderate high storage capacity of 32 wt-%. At the same time, the pH-dependent delivery of 5-Fu could be achieved in phosphate-buffered saline (PBS) solution. With a lower pH value, the drug release will be enhanced. Furthermore, the in vitro antitumour activity of the drug/1a composite has been probed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on two human osteogenic sarcoma cells (MG63 and U2OS).


References

[1]  Q. Cheng, X. Li, Y. Wang, M. Dong, F. H. Zhan, J. Liu, Acta Pharmacol. Sin. 2018, 39, 561.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  H. Shen, Y. Wang, W. Shi, G. Sun, L. Hong, Y. Zhang, Acta Biochim. Biophys. Sin. 2018, 50, 191.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  L. Guo, Y. Zhou, Y. Chen, H. Sun, Y. Wang, Y. Qu, Biomed. Pharmacother. 2018, 103, 167.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  X. Sun, X. Ma, J. Wang, Y. Zhao, Y. Wang, J. C. Bihl, Y. Chen, C. Jiang, Oncotarget 2017, 8, 36137.

[5]  M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 2007, 46, 7548.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angew. Chem. Int. Ed. 2006, 45, 5974.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  E. Anglin, L. Cheng, W. Freeman, M. Sailor, Adv. Drug Deliv. Rev. 2008, 60, 1266.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  R. Babu, A. C. Kathalikkattil, R. Roshan, J. Tharun, D. W. Kim, D. W. Park, Green Chem. 2016, 18, 232.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  D. Chen, W. Shi, P. Cheng, Chem. Commun. 2015, 51, 370.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Y. Cui, T. Song, J. Yu, Y. Yang, Z. Wang, G. Qian, Adv. Funct. Mater. 2015, 25, 4796.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  J. Li, X. H. Ji, J. T. Li, J. Mol. Struct. 2017, 22, 1147.

[12]  J. Li, J. T. Li, Inorg. Chem. Commun. 2018, 51, 89.

[13]  J. T. Li, J. Li, L. M. Song, X. H. Ji, Inorg. Chem. Commun. 2017, 88, 83.

[14]  X. Du, R. Fan, L. Qiang, K. Xing, H. Ye, X. Ran, Y. Song, P. Wang, Y. Yang, ACS Appl. Mater. Interfaces 2017, 9, 28939.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  W. Lin, Q. Hu, J. Yu, K. Jiang, Y. Yang, S. Xiang, Y. Cui, Y. Yang, Z. Wang, G. Qian, ChemPlusChem 2016, 81, 804.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  Q. Hu, J. Yu, M. Liu, A. Liu, Z. Dou, Y. Yang, J. Med. Chem. 2014, 57, 5679.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  J. An, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc. 2009, 131, 8376.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo, A. M. Nyström, X. Zou, J. Am. Chem. Soc. 2016, 138, 962.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  C. Y. Ang, S. Y. Tan, C. Teh, J. M. Lee, M. F. E. Wong, Q. Qu, L. Q. Poh, M. Li, Y. Zhang, V. Korzh, Y. Zhao, Small 2017, 13, 1602379.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  B. Li, Z. Meng, Q. Li, X. Huang, Z. Kang, H. Dong, J. Chen, J. Sun, Y. Dong, J. Li, X. Jia, J. L. Sessler, Q. Meng, C. Li, Chem. Sci. 2017, 8, 4458.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  X. Guan, Z. Guo, T. Wang, L. Lin, J. Chen, H. Tian, X. Chen, Biomacromolecules 2017, 18, 1342.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  E. A. Giles-Mazón, I. Germán-Ramos, F. Romero-Romero, E. Reinheimer, R. A. Toscano, N. Lopez, C. E. Barrera-Díaz, V. Varela-Guerrero, M. F. Ballesteros-Rivas, Inorg. Chim. Acta 2018, 469, 306.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J. An, R. P. Fiorella, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc. 2009, 131, 8401.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  T. Li, M. T. Kozlowski, E. A. Doud, M. N. Blakely, N. L. Rosi, J. Am. Chem. Soc. 2013, 135, 11688.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  P. Y. Du, W. Gu, X. Liu, New J. Chem. 2016, 40, 9017.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  J. Q. Liu, X. F. Li, C. Y. Gu, J. C. S. da Silva, A. L. Barros, S. Alves-Jr, B. H. Li, F. Ren, S. R. Batten, T. A. Soares, Dalton Trans. 2015, 44, 19370.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  W. Zhang, Y. B. Ma, Y. A. Li, H. P. Wang, J. Iran. Chem. Soc. 2018,
         | Crossref | GoogleScholarGoogle Scholar |