Reverse Micro-Emulsion Synthesis of Oxygen-Enriched Low-Friction Boron Nitride/Calcium Borate Microspheres
Songdong Yuan A B C , Canxing Yang A B , Xing Zhu A B , Guodong Jiang A B , Renzhong Huang A B , Jian Xiong A B and Qing Ai A BA Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, China.
B The Synergistic Innovation Center of Catalysis Materials of Hubei Province, Wuhan 430068, China.
C Corresponding author. Email: yuansongdong@aliyun.com
Australian Journal of Chemistry 71(12) 983-989 https://doi.org/10.1071/CH18362
Submitted: 26 July 2018 Accepted: 21 October 2018 Published: 21 November 2018
Abstract
Oxygen enriched boron nitride microspheres (BNOs) coated with nano-sized calcium borate (CB) were synthesised by a reverse micro-emulsion method, in which calcium chloride and sodium borate were selected as the calcium and boron source, respectively. The phase identification and chemical bonding of the composite were confirmed by X-ray driffraction (XRD) and FT-IR spectroscopy. The chemical composition and valence state were determined by X-ray photoelectron spectroscopy (XPS). The morphology and microstructure of the samples were characterised by transmission electron microscopy (TEM) along with surface area analysis. The tribological property of the microspheres as a wear resistance additive in base oil was evaluated by a four-ball tester. The results show that the strawberry-like BNO/CB nanocomposites were fabricated successfully and possess a relatively high friction-reducing and antiwear performance. After the addition of BNO/CB nanocomposites, the friction coefficients of the base oil decreased by 13.3 % while the diameter of the grinding spot decreased by 16.4 %.
References
[1] B. Podgornik, T. Kosec, A. Kocijan, C. Donik, Tribol. Int. 2015, 81, 267.| Crossref | GoogleScholarGoogle Scholar |
[2] W. Li, Z. L. Cheng, Z. Liu, J. Mater. Eng. Perform. 2017, 26, 1.
[3] Z. S. Chen, H. J. Li, Q. G. Fu, X. F. Qiang, Tribol. Int. 2012, 56, 58.
| Crossref | GoogleScholarGoogle Scholar |
[4] H. Chen, C. H. Xu, G. C. Xiao, Z. Q. Chen, J. Ma, G. Y. Wu, Ceram. Int. 2016, 42, 5504.
| Crossref | GoogleScholarGoogle Scholar |
[5] R. B. Choudhary, P. P. Pande, Lubr. Sci. 2002, 14, 211.
| Crossref | GoogleScholarGoogle Scholar |
[6] J. S. Li, L. F. Hao, X. H. Xu, L. Zhang, China Surf. Eng. 2010, 23, 29.
[7] J. S. Li, L. F. Hao, X. H. Xu, L. Zhang, T. H. Ren, J. Chromatogr. A 2010, 149, 1047.
[8] P. Liu, D. Y. Wang, Y. B. Li, Y. Q. Guo, Ind. Lubr. Tribol. 2014, 66, 525.
| Crossref | GoogleScholarGoogle Scholar |
[9] K. Xiong, Study on Preparation and Friction Performance of Composite Nanometer Microspheres Using BN as Core 2014, Ph.D. thesis, Hubei University of Technology (in Chinese).
[10] Z. F. Jia, X. J. Pang, H. Y. Li, J. J. Ni, X. Shao, Tribol. Int. 2015, 90, 240.
| Crossref | GoogleScholarGoogle Scholar |
[11] Y. Y. Zhao, W. Y. Zhen, L. D. Shang, Inorg. Chem. Ind. 2004, 36, 27.
[12] R. B. Lessard, K. A. Berglund, D. G. Nocera, Proc. MRS 1989, 155, 119.
| Crossref | GoogleScholarGoogle Scholar |
[13] X. W. Xu, Preparation, Characterization and Properties of Nanometer-Sized Calcium Borate Powders Used as Lubricant Additives 2012, Ph.D. thesis, Hebei University (in Chinese).
[14] J. S. Li, L. F. Hao, X. H. Xu, T. H. Ren, Ind. Lubr. Tribol. 2012, 64, 217.
| Crossref | GoogleScholarGoogle Scholar |
[15] M. Kruk, M. Jaroniec, A. Sayari, Langmuir 1997, 13, 6267.
| Crossref | GoogleScholarGoogle Scholar |
[16] Y. F. Li, Q. Y. Lai, Wuji Huaxue Xuebao 2005, 21, 915.
[17] P. F. Yang, M. G. Wang, F. J. Meng, J. H. Zhang, A. J. Sun, C. X. Lu, Wuji Huaxue Xuebao 2005, 21, 607.
[18] S. D. Yuan, L. H. Zhu, J. L. Yuan, X. B. Wang, J. F. Wang, H. Q. Tang, J. Wuhan Univ. Technol. 2009, 31, 31.
[19] F. Xu, Y. Xie, X. Zhang, S. Y. Zhang, X. M. Liu, X. B. Tian, Inorg. Chem. 2004, 43, 822.
| Crossref | GoogleScholarGoogle Scholar |
[20] Y. Huang, S. Han, S. Z. Liu, Y. H. Wang, J. S. Li, Ind. Lubr. Tribol. 2014, 66, 143.
| Crossref | GoogleScholarGoogle Scholar |
[21] W. F. Han, Z. Y. Ma, S. C. Liu, C. H. Ge, L. X. Wang, X. D. Zhang, Ceram. Int. 2017, 43, 10192.
| Crossref | GoogleScholarGoogle Scholar |
[22] G. Q. Zhao, Q. Zhao, W. M. Li, X. B. Wang, W. M. Liu, Lubr. Sci. 2014, 26, 43.
| Crossref | GoogleScholarGoogle Scholar |
[23] X. A. Zhao, C. W. Ong, Y. M. Ng, K. F. Chan, Y. C. Tsang, C. L. Choy, P. W. Chan, J. Mater. Sci. Lett. 1997, 16, 1910.
| Crossref | GoogleScholarGoogle Scholar |
[24] J. Legrand, A. Taleb, S. Gota, M. J. Guittet, C. Petit, Langmuir 2002, 18, 4131.
| Crossref | GoogleScholarGoogle Scholar |
[25] H. G. Boyen, P. Widmayer, D. Schwertberger, N. Deyneka, P. Ziemann, Appl. Phys. Lett. 2000, 76, 709.
| Crossref | GoogleScholarGoogle Scholar |
[26] L. F. Hao, J. S. Li, X. H. Xu, T. H. Ren, Ind. Lubr. Tribol. 2012, 64, 16.
| Crossref | GoogleScholarGoogle Scholar |