Two Metal–Organic Coordination Polymers Based on Polypyridyl Ligands: Crystal Structures and Inhibition of Human Spinal Tumour Cells
Hua-Jie Mao A , Qi-Xin Chen A B and Bin Han AA Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China.
B Corresponding author. Email: zrcqx@zju.edu.cn
Australian Journal of Chemistry 71(11) 902-906 https://doi.org/10.1071/CH18274
Submitted: 4 June 2018 Accepted: 11 September 2018 Published: 11 October 2018
Abstract
In this work, two new metal–organic coordination polymers [Co2.5(dtp)2(H2O)5](NO3)(H2O)2 (1, H2dtp = 4′-(3,5-dicarboxyphenyl)-2,2′:6′,2″-terpyridine) [Ni(dpt)](H2O)3 (2, H2dpt = 4′-(3,5-dicarboxyphenyl)-4,2′:6′,4″- terpyridine) have been successfully prepared by reaction of metal ions with two similar carboxylic-pyridinyl ligands with different arrangement of N atoms of terpyridines under solvothermal conditions. Powder X-ray diffraction, elemental analysis, and single-crystal X-ray diffraction techniques were used to probe the structures of the as-prepared complexes. The CoII-based complex 1 exhibits a finite molecular structure and 2 displays a 3D porous framework with a 1D channel. Furthermore, the in vitro anticancer activity of complexes 1 and 2 was evaluated via the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay against U-266, MM1S, and RPMI-8226 human spinal tumour cells.
References
[1] C. Altmeyer, T. K. Karam, N. M. Khalil, R. M. Mainardes, Mater. Sci. Eng. C 2016, 60, 135.| Crossref | GoogleScholarGoogle Scholar |
[2] M. M. Khan, C. Wakade, L. De Sevilla, D. W. Brann, J. Steroid Biochem. Mol. Biol. 2015, 146, 38.
| Crossref | GoogleScholarGoogle Scholar |
[3] M. Rossini, S. Lello, I. Sblendorio, O. Viapiana, E. Fracassi, S. Adami, D. Gatti, Drug Des. Devel. Ther. 2013, 7, 601.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. S. Pino, D. C. Chung, Gastroenterology 2010, 138, 2059.
| Crossref | GoogleScholarGoogle Scholar |
[5] E. N. Mojarad, P. J. Kuppen, H. A. Aghdaei, M. R. Zali, Gastroenterol. Hepatol. Bed Bench 2013, 6, 120.
[6] J. Li, X. H. Ji, J. T. Li, J. Mol. Struct. 2017, 1147, 22.
| Crossref | GoogleScholarGoogle Scholar |
[7] J. Li, J. T. Li, Inorg. Chem. Commun. 2018, 89, 51.
| Crossref | GoogleScholarGoogle Scholar |
[8] K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev. 1998, 177, 347.
| Crossref | GoogleScholarGoogle Scholar |
[9] A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. V. Von Zelewsky, Coord. Chem. Rev. 1988, 84, 85.
| Crossref | GoogleScholarGoogle Scholar |
[10] L. De Cola, P. Belser, Coord. Chem. Rev. 1998, 177, 301.
| Crossref | GoogleScholarGoogle Scholar |
[11] C. Kaes, A. Katz, M. W. Hosseini, Chem. Rev. 2000, 100, 3553.
| Crossref | GoogleScholarGoogle Scholar |
[12] X. H. Zou, B. H. Ye, H. Li, Q. L. Zhang, H. Chao, J. G. Liu, L. N. Ji, X. Y. Li, J. Biol. Inorg. Chem. 2001, 6, 143.
| Crossref | GoogleScholarGoogle Scholar |