Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Selective Adsorption and Separation of Organic Dyes by Poly(acrylic acid) Hydrogels Formed with Spherical Polymer Brushes and Chitosan

Rui Zhang A C , Hongwei Peng A , Tianxu Zhou A , Min Li A , Xuhong Guo A and Yuan Yao B C
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

B School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

C Corresponding authors. Email: r.zhang@ecust.edu.cn; yaoyuan@ecust.edu.cn

Australian Journal of Chemistry 71(11) 846-854 https://doi.org/10.1071/CH18228
Submitted: 19 May 2018  Accepted: 7 August 2018   Published: 7 September 2018

Abstract

Direct discharge of industry organic dyes has caused serious environmental pollution. In this study, a series of double network poly(acrylic acid) (PAA) hydrogels were fabricated with spherical polymer brushes (SPBs) and chitosan (CS) as crosslinker. Neutral spherical polyelectrolyte brushes of polystyrene–poly-N-isopropylacrylamide (PNIPAM@PS) in which poly(N-isopropylacrylamide) (PNIPAM) arms were grafted on polystyrene (PS) nanospheres, were employed as macro-crosslinkers. The innumerable hydrogen bonds both between the highly entangled PAA chains and between PNIPAM and the PAA chains composed the first network of the hydrogels. The electrostatic interactions between CS and the PAA chains formed the second network of the hydrogels. These double network hydrogels, named PNIPAM@PS/CS/PAA, achieve good compressive performance and a low swell ratio because of their compact structure through plentiful hydrogen bonding and electrostatic interactions. The hydrogel could absorb cationic dyes from water with high separation efficiency and selectivity due to the electrostatic interaction between the carboxy groups and dye molecules. The adsorption process fitted a pseudo-second-order kinetic model and Langmuir isotherm model very well. Moreover, the hydrogel can separate cationic dyes from mixed dye solutions through electrostatic interactions. After being loaded with silver nanoparticles, the obtained silver@hydrogel exhibited a good capacity for the photocatalytic degradation towards different dyes. The hydrogels are promising for dye-containing wastewater treatment.


References

[1]  N. Peng, D. Hu, J. Zeng, Y. Li, L. Liang, C. Chang, ACS Sustain. Chem. & Eng. 2016, 4, 7217.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  A. Demirbas, J. Hazard. Mater. 2009, 167, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  H. Sun, L. Cao, L. Lu, Nano Res. 2011, 4, 550.

[4]  W. H. Leung, W. H. Lo, P. H. Chan, RSC Adv. 2015, 5, 90022.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  Y. R. Zhang, S. L. Shen, S. Q. Wang, J. Huang, P. Su, Q. R. Wang, B. X. Zhao, Chem. Eng. J. 2014, 239, 250.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  C. Zhang, L. Chen, T. J. Wang, C. L. Su, Y. Jin, Appl. Surf. Sci. 2014, 317, 552.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  M. Valix, W. H. Cheung, G. Mckay, Langmuir 2006, 22, 4574.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Y. Zhang, X. Ma, H. Xu, Z. Shi, J. Yin, X. Jiang, Langmuir 2016, 32, 13073.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  J. X. Jiang, Y. Li, X. Wu, J. Xiao, D. J. Adams, A. I. Cooper, Macromolecules 2013, 46, 8779.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  X. Wang, C. Hou, W. Qiu, Y. Ke, Q. Xu, X. Y. Liu, Y. Lin, ACS Appl. Mater. Interfaces 2017, 9, 684.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  R. Zhang, Z. Yu, Y. Yao, X. Hou, Q. Shen, L. Wang, X. Guo, J. Wang, X. Zhu, Chem. – Eur. J. 2017, 23, 13696.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  J. Han, Z. Du, Z. Wei, H. Li, Z. Chen, Chem. Eng. J. 2015, 262, 571.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  S. Duan, J. X. Li, X. Liu, Y. Wang, S. Zeng, D. Shao, T. Hayat, ACS Sustain. Chem. & Eng. 2016, 4, 3368.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  S. Wang, C. W. Ng, W. Wang, Q. Li, L. Li, J. Chem. Eng. Data 2012, 57, 1563.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  J. H. Deng, X. R. Zhang, G. M. Zeng, J. L. Gong, Q. Y. Niu, J. Liang, Chem. Eng. J. 2013, 226, 189.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. O. Ganiyu, N. Oturan, S. Raffy, M. Cretin, R. Esmilaire, E. V. Hullebusch, G. Esposito, M. A. Oturan, Water Res. 2016, 106, 171.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  G. Gao, G. Du, Y. Cheng, J. Fu, J. Mater. Chem. B 2014, 2, 1539.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  Y. Li, Y. Sun, X. Ying, G. Gao, S. Liu, J. Zhang, J. Fu, ACS Appl. Mater. Interfaces 2016, 8, 26326.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  S. Liu, G. Gao, Y. Xiao, J. Fu, J. Mater. Chem. B 2016, 4, 3239.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  S. Sun, L. B. Mao, Z. Lei, S. H. Yu, H. Cölfen, Angew. Chem. Int. Ed. 2016, 55, 11765.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  H. Gao, Y. Sun, J. Zhou, R. Xu, H. Duan, ACS Appl. Mater. Interfaces 2013, 5, 425.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. M. Sari, Water Sci. Technol. 2010, 61, 2097.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  X. Wang, Z. Liu, X. Ye, K. Hu, H. Zhong, J. Yu, M. Jin, Z. Guo, Appl. Surf. Sci. 2014, 308, 82.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  M. Khan, I. M. C. Lo, J. Hazard. Mater. 2017, 322, 195.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  Y. Yang, X. Wang, F. Yang, H. Shen, D. Wu, Adv. Mater. 2016, 28, 7178.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  X. Guo, A. A. Weiss, M. Ballauff, Macromolecules 1999, 32, 6043.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  G. L. Du, Y. Cong, L. Chen, J. Chen, J. Fu, Chin. J. Polym. Sci. 2017, 35, 1286.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  S. Gu, L. Duan, X. Ren, G. H. Gao, J. Colloid Interface Sci. 2017, 492, 119.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J. Yang, S. Liu, Y. Xiao, G. Gao, Y. Sun, Q. Guo, J. Wu, J. Fu, J. Mater. Chem. B 2016, 4, 1733.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  G. Gao, Y. Xiao, Q. Wang, J. Fu, RSC Adv. 2016, 6, 37974.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  V. N. Rai, S. N. Thakur, D. K. Rai, Pramana 1984, 23, 215.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  G. McKay, AIChE J. 1984, 30, 692.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  W. Spencer, J. R. Sutter, J. Phys. Chem. 1979, 83, 1573.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  T. Nakato, H. Edakubo, T. Shimomura, Microporous Mesoporous Mater. 2009, 123, 280.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  Q. Q. Wang, B. Z. Lin, B. H. Xu, X. L. Li, Z. J. Chen, X. T. Pian, Microporous Mesoporous Mater. 2010, 130, 344.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  K. Mallick, M. Witcomb, M. Scurrell, Mater. Chem. Phys. 2006, 97, 283.
         | Crossref | GoogleScholarGoogle Scholar |