Effect of Alternation of Chloropropoxy and Propoxy Units and Impact of the Ethylol-Group Number on Properties of Surfactants
Gulnara A. Ahmadova A , Aygul Z. Abilova A , Ravan A. Rahimov A C , Seadet M. Askerzade A , Ziyafaddin H. Asadov A , Fedor I. Zubkov B and Saida F. Ahmadbayova AA Institute of Petrochemical Processes of Azerbaijan National Academy of Sciences, Hojaly Avenue 30, AZ 1025, Baku, Azerbaijan.
B Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
C Corresponding author. Email: revan_chem@mail.ru
Australian Journal of Chemistry 71(11) 837-845 https://doi.org/10.1071/CH18213
Submitted: 11 May 2018 Accepted: 30 July 2018 Published: 4 September 2018
Abstract
Surfactants based on myristic acid, epichlorohydrin, and propylene oxide were obtained in two ways. First, the ester of myristic acid and epichlorohydrin was synthesised, and then with propylene oxide. Second, myristic acid was first reacted with propylene oxide, and then with epichlorohydrin. In both cases, the reactions were carried out at 150–160°C using triethylamine as a catalyst. The obtained chloropropoxy-propoxy and propoxy-chloropropoxy esters of myristic acid are non-ionic surfactants. These products were transformed into cationic surfactants by interaction with several ethanolamines. The specific electroconductance and surface activity of the obtained surfactants, characters that vary with the colloidal–chemical parameters of the surfactants, depended on such factors as the sequence of the epichlorohydrin and propylene oxide units inside the polar group of the obtained ionic surfactants, the presence of the methyl group linked to the N-atom, as well as the number of ethylol groups. It was revealed that the synthesised surfactants possess a property of localising thin (thickness <1 mm) petroleum films spread over different types of water.
References
[1] T. Gaudin, P. Rotureau, I. Pezron, G. Fayet, J. Colloid Interface Sci. 2018, 516, 162.| Crossref | GoogleScholarGoogle Scholar |
[2] P. Kanokkarn, T. Shiina, M. Santikunaporn, S. Chavadej, Colloids Surf. A 2017, 524, 135.
| Crossref | GoogleScholarGoogle Scholar |
[3] A. M. Hussein, M. M. Khowdiary, J. Surfactants Deterg. 2014, 17, 615.
| Crossref | GoogleScholarGoogle Scholar |
[4] N. A. Negm, A. F. M. El-Farargy, E. A. A. Halim, S. El-lboudy, A. E-S. I. Ahmed, J. Surfactants Deterg. 2014, 17, 1203.
| Crossref | GoogleScholarGoogle Scholar |
[5] T. Zhou, J. Zhao, J. Colloid Interface Sci. 2009, 331, 476.
| Crossref | GoogleScholarGoogle Scholar |
[6] D. Beneventi, B. Carre, A. Gandini, Langmuir 2002, 18, 618.
| Crossref | GoogleScholarGoogle Scholar |
[7] W. Zhang, Y. H. Tan, J. A. Finch, Miner. Eng. 2016, 95, 66.
| Crossref | GoogleScholarGoogle Scholar |
[8] D. Panswad, D. A. Sabatini, S. Khaodhiar, J. Surfactants Deterg. 2012, 15, 787.
| Crossref | GoogleScholarGoogle Scholar |
[9] D. Panswad, D. A. Sabatini, S. Khaodhiar, J. Surfactants Deterg. 2011, 14, 577.
| Crossref | GoogleScholarGoogle Scholar |
[10] B. Sarkar, P. Alexandridis, J. Phys. Chem. B 2010, 114, 4485.
| Crossref | GoogleScholarGoogle Scholar |
[11] B. Sarkar, S. Lam, P. Alexandridis, Langmuir 2010, 26, 10532.
| Crossref | GoogleScholarGoogle Scholar |
[12] L. Guo, Y. Liu, S.-Sh. Hu, Zh.-Ch. Xu, Q.-T. Gong, L. Zhang, L. Zhang, J. Petrol. Sci. Eng. 2016, 141, 9.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. M. Forgiarini, C. Scorzza, J. Velasquez, F. Vejar, E. Zambrano, J.-L. Salager, J. Surfactants Deterg. 2010, 13, 451.
| Crossref | GoogleScholarGoogle Scholar |
[14] Z. Zhi-guo, Y. Hong, J. Zhejiang Univ. Sci. B 2005, 6, 219.
| Crossref | GoogleScholarGoogle Scholar |
[15] Sh. Yada, T. Suzuki, S. Hashimoto, T. Yoshimura, Langmuir 2017, 33, 3794.
| Crossref | GoogleScholarGoogle Scholar |
[16] E. Yu, X. K. Mamat, Y. Zhang, W. Eli, Lett. Org. Chem. 2015, 12, 590.
| Crossref | GoogleScholarGoogle Scholar |
[17] R. Aggarwal, S. Singh, J. Surfactants Deterg. 2018, 21, 43.
| Crossref | GoogleScholarGoogle Scholar |
[18] Z. H. Asadov, R. A. Rahimov, G. A. Ahmadova, Kh. A. Mammadova, J. Surfactants Deterg. 2012, 15, 721.
| Crossref | GoogleScholarGoogle Scholar |
[19] Z. H. Asadov, Sh. M. Nasibova, R. A. Rahimov, G. A. Ahmadova, S. M. Huseynova, J. Mol. Liq. 2017, 225, 451.
| Crossref | GoogleScholarGoogle Scholar |
[20] Z. H. Asadov, R. A. Rahimov, K. A. Mammadova, A. V. Gurbanov, G. A. Ahmadova, J. Surfactants Deterg. 2016, 19, 145.
| Crossref | GoogleScholarGoogle Scholar |
[21] M. J. Rosen, J. T. Kunjappu, Surfactants and Interfacial Phenomena, 4th edn 2012 (John Wiley & Sons, Inc.: Hoboken, NJ).
[22] A. M. Omar, N. A. Abdel-Khalek, J. Chem. Eng. Data 1998, 43, 117.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. Dasgupta, P. K. Das, R. S. Dias, M. G. Miguel, B. Lindman, V. M. Jadhav, M. Gnanamani, S. Maiti, J. Phys. Chem. B 2007, 111, 8502.
| Crossref | GoogleScholarGoogle Scholar |
[24] R. Wang, Y. Li, Q. Li, Tenside Surfactants Deterg. 2014, 51, 54.
| Crossref | GoogleScholarGoogle Scholar |