End-Blocked Silanization of Side-Chain Fluoroalkyl Oligoether and its Surface Properties
Lei Wang A B , Lei Chen A B and Zhanxiong Li A B CA College of Textile and Clothing Engineering, Soochow University, No. 199 Renai Road, Industry Park, Suzhou 215021, China.
B National Engineering Laboratory for Modern Silk, No. 199 Renai Road, Industry Park, Suzhou 215123, China.
C Corresponding author. Email: lizhanxiong@suda.edu.cn
Australian Journal of Chemistry 71(11) 855-862 https://doi.org/10.1071/CH18126
Submitted: 27 March 2018 Accepted: 23 August 2018 Published: 18 September 2018
Abstract
In this study, three novel side-chain fluoroalkyl oligoethers with different molecular weights were synthesised via a ring-opening reaction of 2,2,3,3,4,4,5,5,5-nonafluoropentyloxirane. The fluorooligoethers were then silanized and characterised by FT-IR,1H, and 19F NMR spectroscopies. These silanlized fluorooligoethers were used to fabricate hydrophobic coatings on silicon substrates, which were pre-treated with O2 plasma, by the method of liquid phase deposition. The chemical compositions and structures of the film surfaces were analysed by X-ray photoelectron spectroscopy and the results showed that silanized fluorooligoethers formed self-assembled films on the silicon wafer. The surface wettability of the coatings was measured by water contact angles. It is noted that the annealing process can improve the hydrophobicity with the highest water contact angle being 115.2 ± 1° and hexadecane contact angle being 67.2 ± 1°. The surface morphologies and roughness of the self-assembled films were measured by atomic force microscopy (AFM), as a result, the surface was found to be rougher with the increment of the molecular weight of the fluorooligoethers.
References
[1] D. F. Cheng, B. Masheder, C. Urata, A. Hozumi, Langmuir 2013, 29, 11322.| Crossref | GoogleScholarGoogle Scholar |
[2] J. F. Berret, D. Calvet, A. Collet, M. Viguier, Curr. Opin. Colloid Interface Sci. 2003, 8, 296.
| Crossref | GoogleScholarGoogle Scholar |
[3] M. Cichomski, K. Kosla, W. Kozlowski, W. Szmaja, J. Balcerski, J. Rogowski, J. Grobelny, Appl. Surf. Sci. 2012, 271, 344.
[4] B. Sauer, R. S. Mclean, R. R. Thomas, Langmuir 1998, 14, 3045.
| Crossref | GoogleScholarGoogle Scholar |
[5] R. Bongiovanni, G. Beamson, A. Mamo, A. Priola, A. Recca, C. Tonelli, Polymer 2000, 41, 409.
| Crossref | GoogleScholarGoogle Scholar |
[6] Y. S. Kim, J. S. Lee, Q. Ji, J. E. McGrath, Polymer 2002, 43, 7161.
| Crossref | GoogleScholarGoogle Scholar |
[7] R. Kaplánek, O. Paleta, J. Michálek, M. Přádný, J. Fluor. Chem. 2005, 126, 593.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. Yuasa, H. Inaba, K. Tadanaga, M. Tatsumisago, T. Minami, in Proceedings of 17th International Congress on Glass 1995, 17, pp. 445–449 (International Academic Publishers: Beijing).
[9] K. Izumi, H. Tanaka, M. Murakami, T. Deguchi, A. Morita, N. Tohge, T. Minami, J. Non-Cryst. Solids 1990, 121, 344.
| Crossref | GoogleScholarGoogle Scholar |
[10] H. Tada, H. Nagayama, Langmuir 1995, 11, 136.
| Crossref | GoogleScholarGoogle Scholar |
[11] L. Chen, H. Shi, H. Wu, Colloids Surf. A. 2010, 368, 148.
| Crossref | GoogleScholarGoogle Scholar |
[12] Y. Tongkhundam, A. Sirivat, W. Brostow, Polymer 2004, 45, 8731.
| Crossref | GoogleScholarGoogle Scholar |
[13] W. C. Jiang, Y. G. Huang, G. T. Gu, W. D. Meng, F. L. Qing, Appl. Surf. Sci. 2006, 253, 2304.
| Crossref | GoogleScholarGoogle Scholar |
[14] T. Darmanin, F. Guittard, Soft Matter 2013, 9, 5982.
| Crossref | GoogleScholarGoogle Scholar |
[15] V. Cirkva, B. Ameduri, B. Boutevin, O. Paleta, J. Fluor. Chem. 1997, 84, 53.
| Crossref | GoogleScholarGoogle Scholar |
[16] V. Církva, B. Ameduri, B. Boutevin, O. Paleta, J. Fluor. Chem. 1997, 83, 151.
| Crossref | GoogleScholarGoogle Scholar |
[17] V. Církva, M. Gaboyard, O. Paleta, J. Fluor. Chem. 2000, 102, 349.
| Crossref | GoogleScholarGoogle Scholar |
[18] L. Conte, F. Maniero, A. Zaggia, R. Bertani, G. Gambaretto, A. Berton, R. Seraglia, J. Fluor. Chem. 2005, 126, 1274.
| Crossref | GoogleScholarGoogle Scholar |
[19] P. V. Ramachandran, K. J. Padiya, J. Fluor. Chem. 2007, 128, 1255.
| Crossref | GoogleScholarGoogle Scholar |
[20] N. O. Brace, J. Org. Chem. 1962, 27, 3033.
| Crossref | GoogleScholarGoogle Scholar |
[21] M. Yoshida, N. Kamigata, H. Sawada, ChemInform 1989, 20, 43.
[22] S. P. Pujari, L. Scheres, A. T. M. Marcelis, H. Zuilhof, Angew. Chem. 2014, 53, 6322.
| Crossref | GoogleScholarGoogle Scholar |
[23] Z. Petrovic, M. Metikos-Hukovic, R. Babic, Prog. Org. Coat. 2008, 61, 1.
| Crossref | GoogleScholarGoogle Scholar |
[24] L. Wu, L. Cai, A. Q. Liu, W. Wang, Y. H. Yuan, Z. X. Li, Appl. Surf. Sci. 2015, 349, 683.
| Crossref | GoogleScholarGoogle Scholar |
[25] L. Cai, A. Q. Liu, Y. H. Yuan, L. Dai, Z. X. Li, Prog. Org. Coat. 2017, 102, 247.
| Crossref | GoogleScholarGoogle Scholar |
[26] M. Masuko, H. Miyamoto, A. Suzuki, Tribol. Int. 2007, 40, 1587.
| Crossref | GoogleScholarGoogle Scholar |
[27] M. Cichomski, K. Kosla, W. Pawlak, W. Kozlowski, W. Szmaja, Tribol. Int. 2014, 77, 1.
| Crossref | GoogleScholarGoogle Scholar |
[28] T. S. Druzhinina, C. Hoppener, S. Hoeppener, U. S. Schubert, Langmuir 2013, 29, 7515.
| Crossref | GoogleScholarGoogle Scholar |
[29] J. P. Dong, A. F. Wang, K. Y. Simon, G. Z. Mao, Thin Solid Films 2006, 515, 2116.
| Crossref | GoogleScholarGoogle Scholar |
[30] A. Y. Fadeev, T. J. McCarthy, Langmuir 1999, 15, 3759.
| Crossref | GoogleScholarGoogle Scholar |
[31] J. B. Brzoska, N. Shahidzadeh, F. Rondelez, Nature 1992, 360, 719.
| Crossref | GoogleScholarGoogle Scholar |
[32] J. Sagiv, J. Am. Chem. Soc. 1980, 102, 92.
| Crossref | GoogleScholarGoogle Scholar |