Cobalt Species Active for Nitrous Oxide (N2O) Decomposition within a Temperature Range of 300–600°C
Naseer A. Khan A B , Eric M. Kennedy A , Bogdan Z. Dlugogorski C , Adesoji A. Adesina D and Michael Stockenhuber A EA Priority Research Centre for Energy (PRCfE), The University of Newcastle, Callaghan, NSW 2308, Australia.
B Department of Chemical Engineering, University of Engineering and Technology (UET) Peshawar, Khyber Pakhtunkhwa (KPK), Pakistan.
C School of Engineering and IT, Murdoch University, Perth, WA 6150, Australia.
D ATODATECH LLC, Brentwood, CA 94513, USA.
E Corresponding author. Email: michael.stockenhuber@newcastle.edu.au
Australian Journal of Chemistry 70(10) 1138-1145 https://doi.org/10.1071/CH17172
Submitted: 26 March 2017 Accepted: 11 June 2017 Published: 24 August 2017
Abstract
This article presents a novel study of the role of the catalyst support towards the formation of active cobalt sites for N2O conversion reactions within a temperature range of 300–600°C. These reactions were examined in a fixed bed tubular reactor. ZSM-5 (Si/ Al = 15), TS-1, and amorphous silicates were used as catalyst supports for cobalt loadings. All catalysts were prepared by following standard methods and recipes. In general, cobalt loading on supports was varied between 0.78 and 5.40 wt.-% (as determined from inductively coupled plasma (ICP) analysis). ICP, temperature programmed desorption, X-ray diffraction, and N2 adsorption/desorption isotherms were used for the characterization of prepared catalysts. Cobalt on ZSM-5 support generates weak and strong acid sites. Furthermore, for the Co-ZSM-5 catalyst, prepared by a wet deposition method, the N2O decomposition reaction is first order with an activation energy of ~132 kJ mol−1. Co2+ and Co3+ are the suggested active species for the N2O conversions in the studied range of temperatures.
References
[1] G. I. Panov, CATTech 2000, 4, 18.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVWk&md5=0c5ed5b20d6990a16f34e89ff33ee580CAS |
[2] J. M. Smith, H. Van Ness, M. M. Abbott, Introduction to Chemical Engineering Thermodynamics 2005 (McGraw-Hill Education: London).
[3] B. R. Wood, J. A. Reimer, A. T. Bell, M. T. Janicke, K. C. Ott, J. Catal. 2004, 224, 148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVejtLs%3D&md5=8e3da297c4aa91044b09675ff8558081CAS |
[4] R. S. Liu, M. Iwamoto, J. H. Lunsford, J. Chem. Soc., Chem. Commun. 1982, 78.
| Crossref | GoogleScholarGoogle Scholar |
[5] H. F. Liu, R. S. Liu, K. Y. Liew, R. E. Johnson, J. H. Lunsford, J. Am. Chem. Soc. 1984, 106, 4117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXksFCgsrk%3D&md5=d07e37fd3f3d7121c7118e9c83c96390CAS |
[6] M. M. Khan, G. A. Somorjai, J. Catal. 1985, 91, 263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtFaltrw%3D&md5=6d8bd65f9a5b68f8fadb429ff11fedf9CAS |
[7] K. J. Zhen, M. M. Khan, C. H. Mak, K. B. Lewis, G. A. Somorjai, J. Catal. 1985, 94, 501.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFCntbs%3D&md5=bdf5c258f16833ec0bc10d91351cc16aCAS |
[8] V. N. Parmon, G. I. Panov, A. Uriarte, A. S. Noskov, Catal. Today 2005, 100, 115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1Smsr4%3D&md5=2df036336c90b0426a302d2ebf501aecCAS |
[9] M. Iwamoto, J. Hirata, K. Matsukami, S. Kagawa, J. Phys. Chem. 1983, 87, 903.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhtVKls70%3D&md5=ce3f342f217f0f93bd0d3cfa1bf2bff1CAS |
[10] E. Suzuki, K. Nakashiro, Y. Ono, Chem. Lett. 1988, 17, 953.
| Crossref | GoogleScholarGoogle Scholar |
[11] E. V. Starokon, M. V. Parfenov, S. E. Malykhin, G. I. Panov, J. Phys. Chem. C 2011, 115, 12554.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFSktro%3D&md5=7ed86603f99a06314855b1cf1376ab74CAS |
[12] K. A. Dubkov, V. I. Sobolev, E. P. Talsi, M. A. Rodkin, N. H. Watkins, A. A. Shteinman, G. I. Panov, J. Mol. Catal. Chem. 1997, 123, 155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVamsr8%3D&md5=c6ef92c81091565eb3a571c9cdb74329CAS |
[13] G. I. Panov, K. A. Dubkov, E. V. Starokon, Catal. Today 2006, 117, 148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslCru74%3D&md5=090c6cffbe45f57532c980f990479f10CAS |
[14] G. Centi, S. Perathoner, F. Vazzana, M. Marella, M. Tomaselli, M. Mantegazza, Adv. Environ. Res. 2000, 4, 325.
| Crossref | GoogleScholarGoogle Scholar |
[15] L. Höglund-Isaksson, W. Winiwarter, P. Purohit, P. Rafaj, W. Schöpp, Z. Klimont, Energy Strateg. Rev. 2012, 1, 97.
| Crossref | GoogleScholarGoogle Scholar |
[16] S. Castillo, I. Mac-Beath, I. Mejia, R. Camposeco, G. Bazan, M. Morán-Pineda, R. Carrera, R. Gómez, J. Environ. Manage. 2012, 98, 56.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1arur4%3D&md5=787f6f924050262dce0c913287cb9d49CAS |
[17] Y. Li, J. N. Armor, Appl. Catal. B 1992, 1, L21.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsFOiur8%3D&md5=8489469bfe550ef2a0f28ab42fa93e34CAS |
[18] K. Sun, H. Xia, E. Hensen, R. van Santen, C. Li, J. Catal. 2006, 238, 186.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFyqtg%3D%3D&md5=12676d3147ae84c3271fa4f93a857eb3CAS |
[19] F. Kapteijn, J. Rodriguez-Mirasol, J. A. Moulijn, Appl. Catal. B 1996, 9, 25.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xlt1GrtLg%3D&md5=6573a14c96e446fb8a6818075ffba10cCAS |
[20] M. A. K. Khalil, Chemosphere: Global Change Sci. 2000, 2, 233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1egsr0%3D&md5=f34f066d436c58e76063a5c76a35b9a2CAS |
[21] M. Zabilskiy, P. Djinović, E. Tchernychova, O. P. Tkachenko, L. M. Kustov, A. Pintar, ACS Catal. 2015, 5, 5357.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Kmsr3I&md5=1de3441d8b101c79389fed7730eeb74dCAS |
[22] E. V. Kondratenko, J. Pérez-Ramírez, J. Phys. Chem. B 2006, 110, 22586.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKiur%2FM&md5=d68e8d8ff889299e1933f2091afcd322CAS |
[23] G. D. Pirngruber, M. Luechinger, P. K. Roy, A. Cecchetto, P. Smirniotis, J. Catal. 2004, 224, 429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVGis7Y%3D&md5=89cc598221e13da1eb6053ecc31d6fa4CAS |
[24] I. Yuranov, D. A. Bulushev, A. Renken, L. Kiwi-Minsker, J. Catal. 2004, 227, 138.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntV2nsr8%3D&md5=75dd84f55c30b6f4eaf2a481197226baCAS |
[25] A. Heyden, B. Peters, A. T. Bell, F. J. Keil, J. Phys. Chem. B 2005, 109, 1857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksV2jug%3D%3D&md5=50be2114be59a878f52332a032d56f47CAS |
[26] M. Zabilskiy, B. Erjavec, P. Djinović, A. Pintar, Chem. Eng. J. 2014, 254, 153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtF2ku77J&md5=411412d2eb81a574b4015860865a52c3CAS |
[27] E. Wilczkowska, K. Krawczyk, J. Petryk, J. W. Sobczak, Z. Kaszkur, Appl. Catal. A 2010, 389, 165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKjurjK&md5=6d86434dce742b25589deda8ad26f53fCAS |
[28] F. S. Stone, J. Solid State Chem. 1975, 12, 271.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhtFKls7Y%3D&md5=5725589a7d21b3b1c3b17405f6a93c96CAS |
[29] N. A. Khan, E. M. Kennedy, B. Z. Dlugogorski, A. A. Adesina, M. Stockenhuber, Catal. Commun. 2014, 53, 42.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVamtrjM&md5=9f02ee56f59ad13a8137a7092e499c57CAS |
[30] K. S. Pillai, J. Jia, W. M. H. Sachtler, Appl. Catal. A 2004, 264, 133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVWku70%3D&md5=f0d6596191801bcbabe3897278bd3519CAS |
[31] R. Pitchai, K. Klier, Catal. Rev. 1986, 28, 13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xhs1Olurc%3D&md5=ba4d6fdbb72f5636bdf69f0385982a2bCAS |
[32] J. A. Z. Pieterse, S. Booneveld, R. W. van den Brink, Appl. Catal. B 2004, 51, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1Kju7g%3D&md5=c5c6e551bb42c5e09d8102aa26f68ba5CAS |
[33] J. Pérez-Ramírez, F. Kapteijn, G. Mul, J. A. Moulijn, Appl. Catal. B 2002, 35, 227.
| Crossref | GoogleScholarGoogle Scholar |
[34] B. Coq, M. Mauvezin, G. Delahay, S. Kieger, J. Catal. 2000, 195, 298.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntlGisrw%3D&md5=ac73951b1b8a1731bc4893a1391c046eCAS |
[35] K. Sugawara, T. Nobukawa, M. Yoshida, Y. Sato, K. Okumura, K. Tomishige, K. Kunimori, Appl. Catal. B 2007, 69, 154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislGl&md5=a0de56af16cdfa4e5fa395d55ea51dd0CAS |
[36] M. N. Debbagh, A. Bueno-López, C. Salinas Martínez de Lecea, J. Pérez-Ramírez, Appl. Catal. A 2007, 327, 66.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFKiu7s%3D&md5=ecf76b7672db57c86b47cc6ef9d4b077CAS |
[37] M. S. Kumar, J. Pérez-Ramírez, M. N. Debbagh, B. Smarsly, U. Bentrup, A. Brückner, Appl. Catal. B 2006, 62, 244.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFKitg%3D%3D&md5=987a5900b37a6c9546579be73e83c34eCAS |
[38] O. Sánchez-Galofré, Y. Segura, J. Pérez-Ramírez, J. Catal. 2007, 249, 123.
| Crossref | GoogleScholarGoogle Scholar |
[39] T. Nobukawa, M. Yoshida, K. Okumura, K. Tomishige, K. Kunimori, J. Catal. 2005, 229, 374.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Ojs78%3D&md5=29caefc1b8c713cbf792c598e90ed668CAS |
[40] L. Yan, T. Ren, X. Wang, Q. Gao, D. Ji, J. Suo, Catal. Commun. 2003, 4, 505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVWls70%3D&md5=e30403a2d1f4da8e2aa03fc05ad40498CAS |
[41] L. Xue, C. Zhang, H. He, Y. Teraoka, Appl. Catal. B 2007, 75, 167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWmtr3L&md5=8acdfd19e486c05ab347ffdd031d6de1CAS |
[42] M. Qian, H. C. Zeng, J. Mater. Chem. 1997, 7, 493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFektro%3D&md5=ceb0079c78a1c563ce20076fcf8f1482CAS |
[43] K. Jirátová, J. Balabánová, F. Kovanda, A. Klegová, L. Obalová, R. Fajgar, Catal. Lett. 2017, 147, 1379.
| Crossref | GoogleScholarGoogle Scholar |
[44] Q. Shen, L. Li, C. He, X. Zhang, Z. Hao, Z. Xu, Asia-Pac. J. Chem. Eng. 2012, 7, 502.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFClsLzF&md5=9165be5c352084addf834a0869835580CAS |
[45] S. J. Tauster, S. C. Fung, R. L. Garten, J. Am. Chem. Soc. 1978, 100, 170.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXms1ejsg%3D%3D&md5=ac56d7b16534cbddd46ce3d782346038CAS |
[46] G. Grzybek, P. Stelmachowski, S. Gudyka, P. Indyka, Z. Sojka, N. Guillén-Hurtado, V. Rico-Pérez, A. Bueno-López, A. Kotarba, Appl. Catal. B 2016, 180, 622.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1KgtrbN&md5=a82ed3c4877dfb7cc2a77fadbfc675fbCAS |
[47] M. Bainbridge, J. S. Clarkson, B. L. Parnham, J. Tabatabaei, D. V. Tyers, K. C. Waugh, Catal., Struct. React. 2017, 3, 128.
| Crossref | GoogleScholarGoogle Scholar |
[48] A. M. Ruppert, B. M. Weckhuysen, in Handbook of Heterogeneous Catalysis (Eds G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp) 2008, pp. 1080–1087 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).
[49] A. Hervier, L. R. Baker, K. Komvopoulos, G. A. Somorjai, J. Phys. Chem. C 2011, 115, 22960.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWjt7zJ&md5=fb928497db1c84aadcf3d61b532f2439CAS |
[50] M. Bowker, The Basis And Applications Of Heterogeneous Catalysis (edition en anglais) 1998 (Oxford University Press: Oxford).
[51] G. I. Pannov, V. I. Sobolev, A. S. Kharitonov, J. Mol. Catal. 1990, 61, 85.
| Crossref | GoogleScholarGoogle Scholar |
[52] G. I. Panov, A. S. Kharitonov, V. I. Sobolev, Appl. Catal. A 1993, 98, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisFKqsL4%3D&md5=f9a8c87c5ea0d2e69ab2f97a13b41fb2CAS |
[53] L. V. Pirutko, A. K. Uriarte, V. S. Chernyavsky, A. S. Kharitonov, G. I. Panov, Microporous Mesoporous Mater. 2001, 48, 345.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVSisbY%3D&md5=4ed9f87d18a98e5cd6800d2fd9c8c7eeCAS |
[54] Y. F. Chang, J. G. McCarty, E. D. Wachsman, V. L. Wong, Appl. Catal. B 1994, 4, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlWmur4%3D&md5=eae7ed8c5c651d9e24a3769a7298bd67CAS |
[55] K. Nowińska, A. Wcław, A. Izbińska, Appl. Catal. A 2003, 243, 225.
| Crossref | GoogleScholarGoogle Scholar |
[56] R. S. da Cruz, A. J. S. Mascarenhas, H. M. C. Andrade, Appl. Catal. B 1998, 18, 223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmslSqsL0%3D&md5=796e86d56e190316cff7458f7f12a133CAS |
[57] N. A. Khan, E. M. Kennedy, B. Z. Dlugogorski, A. A. Adesina, N. H. Syed, N. Ullah, I. Shah, T. Ahmad, M. Stockenhuber, J. Pak. Inst. Chem. Eng. 2017, 45, 22.
[58] A. Jentys, A. Lugstein, H. Vinek, J. Chem. Soc., Faraday Trans. 1997, 93, 4091.
| Crossref | GoogleScholarGoogle Scholar |
[59] M. Mhamdi, S. Khaddar-Zine, A. Ghorbel, Appl. Catal. A 2009, 357, 42.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFKmsb0%3D&md5=2c008826ea593f4d98500c62d3af4a85CAS |
[60] J. Dědeček, D. Kaucký, B. Wichterlová, Microporous Mesoporous Mater. 2000, 35–36, 483.
| Crossref | GoogleScholarGoogle Scholar |
[61] P. J. Smeets, Q. Meng, S. Corthals, H. Leeman, R. A. Schoonheydt, Appl. Catal. B 2008, 84, 505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12gt7jE&md5=b90c551683835d5e83e7446321fce814CAS |
[62] T. P. Gaidei, N. Pillet, V. N. Sadov, M. E. Strukova, S. M. Filatov, E. S. Khaustova, N. T. Yaroshenko, Russ. J. Appl. Chem. 2010, 83, 1154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1OgsLc%3D&md5=25373b83143e2f5b7c451dfdf4e73ff7CAS |
[63] X. Zhang, Q. Shen, C. He, C. Ma, J. Cheng, Z. Liu, Z. Hao, Catal. Sci. Technol. 2012, 2, 1249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvF2rsrg%3D&md5=4d6100ddcb470129eda31bc6bafdf005CAS |
[64] Y.-f. Chang, J. G. McCarty, J. Catal. 1998, 178, 408.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtlChs7w%3D&md5=47d388fecc9d8183da3034886f861901CAS |
[65] M. Boudart, Chem. Rev. 1995, 95, 661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltlyltb8%3D&md5=ba80023bf47804de61bb4845c525a657CAS |
[66] K. Hadjiivanov, B. Tsyntsarski, T. Venkov, D. Klissurski, M. Daturi, J. Saussey, J.-C. Lavalley, Phys. Chem. Chem. Phys. 2003, 5, 1695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisFSlurY%3D&md5=36b2f5273f61809329ecf0c03a783a16CAS |
[67] M. L. M. Bonati, R. W. Joyner, M. Stockenhuber, Catal. Today 2003, 81, 653.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVWrtrk%3D&md5=b1b684d3913ede496c27c7dc3a291b2eCAS |
[68] N. A. Khan, E. M. Kennedy, B. Z. Dlugogorski, A. A. Adesina, M. Stockenhuber, J. Energy Chem. 2017, 26, 155.
| Crossref | GoogleScholarGoogle Scholar |
[69] M. Mhamdi, S. Khaddar-Zine, A. Ghorbel, Appl. Catal. A 2008, 337, 39.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVWquro%3D&md5=707af442290f379344e8251951673f43CAS |
[70] K. I. Hadjiivanov, G. N. Vayssilov, in Advances in Catalysis (Eds B. Gates, H. Knüpffer) 2002, Vol. 47, pp. 307–511 (Academic Press: New York, NY).
[71] M. C. Campa, S. De Rossi, G. Ferraris, V. Indovina, Appl. Catal. B 1996, 8, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFSlsr4%3D&md5=3fb592298ad1bbae8bac1a7c4d960de0CAS |
[72] P. J. Smeets, M. H. Groothaert, R. M. van Teeffelen, H. Leeman, E. J. M. Hensen, R. A. Schoonheydt, J. Catal. 2007, 245, 358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFGrsA%3D%3D&md5=cc4141b0785615dccd161b3905bd335eCAS |
[73] P. J. Smeets, M. H. Groothaert, R. M. van Teeffelen, H. Leeman, E. J. M. Hensen, R. A. Schoonheydt, in Studies in Surface Science and Catalysis (Eds R. Xu, Z. Gao, J. Chen, W. Yan) 2007, Vol. 170, pp. 1080–1087 (Elsevier: Amsterdam).
[74] F. Kapteijn, G. Marbán, J. Rodriguez-Mirasol, J. A. Moulijn, J. Catal. 1997, 167, 256.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivV2hs7Y%3D&md5=fbb39e69d97082e966ba83e2bf20f85dCAS |
[75] P. J. Smeets, B. F. Sels, R. M. van Teeffelen, H. Leeman, E. J. M. Hensen, R. A. Schoonheydt, J. Catal. 2008, 256, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlequ7g%3D&md5=e47e1ac0d342fe13fc5330ff13dc16b6CAS |