Efficient Synthesis of an Indinavir Precursor from Biomass-Derived (–)-Levoglucosenone
Edward T. Ledingham A , Kieran P. Stockton A and Ben W. Greatrex A BA School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
B Corresponding author. Email: ben.greatrex@une.edu.au
Australian Journal of Chemistry 70(10) 1146-1150 https://doi.org/10.1071/CH17227
Submitted: 26 April 2017 Accepted: 13 June 2017 Published: 7 July 2017
Abstract
Lignocellulosic biomass pyrolysis with acid catalysis selectively produces the useful chiral synthon 6,8-dioxabicyclo[3.2.1]oct-2-ene-4-one ((–)-levoglucosenone, LGO). In this report, LGO was used to prepare (3R,5S)-3-benzyl-5-(hydroxymethyl)-4,5-dihydrofuran-2(3H)-one, which is an intermediate used in the construction of antivirals including the protease inhibitor indinavir. To achieve the synthesis, the hydrogenated derivative of LGO was functionalised using aldol chemistry and various aromatic aldehydes were used to show the scope of the reaction. Choice of base affected reaction times and the best yields were obtained using 1,1,3,3-tetramethylguanidine. Hydrogenation of the α-benzylidene-substituted bicyclic system afforded a 4 : 3 equatorial/axial mixture of isomers, which was equilibrated to a 97 : 3 mixture under basic conditions. Subsequent Baeyer–Villiger reaction afforded the target lactone in 57 % overall yield for four steps, a route that avoids the protection and strong base required in the traditional approach. The aldol route is contrasted with the α-alkylation and a Baylis–Hillman approach that also both start with LGO.
References
[1] Y. Halpern, R. Riffer, A. Broido, J. Org. Chem. 1973, 38, 204.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXosVKlug%3D%3D&md5=fb99637ef3403221bc5c0a536e1c2c1aCAS |
[2] C. Lawrence, W. Raverty, A. Duncan, WO Patent Application WO/2011/000030 2011.
[3] S. T. Walter, M. O. Jason, W. Chen, D. R. Kevin, B. A. Kirk, W. Yu, Z. Huiyan, C. Steven, C. Synthia, in Carbohydrate Synthons in Natural Products Chemistry (Eds Z. J. Witczak, K. Tatsuda) 2002, ACS Symposium Series, Vol. 841, pp. 21–31 (American Chemical Society: Washington, DC).
[4] F. Cao, T. J. Schwartz, D. J. McClelland, S. H. Krishna, J. A. Dumesic, G. W. Huber, Energy Environ. Sci. 2015, 8, 1808.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXoslyrs70%3D&md5=8e52930f811cd0cef736bbf36a00ae77CAS |
[5] M. Sarotti, M. M. Zanardi, R. A. Spanevello, A. G. Suarez, Curr. Org. Synth. 2012, 9, 439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12nu7%2FM&md5=a9f47b1b0a1b78538fe741798c73db4aCAS |
[6] D. Urabe, T. Nishikawa, M. Isobe, Chem. Asian J. 2006, 1, 125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Sgtb0%3D&md5=a71bf78f32c4fb65a5e0f503e639e73bCAS |
[7] Z. J. Witczak, R. Chhabra, H. Chen, X.-Q. Xie, Carbohydr. Res. 1997, 301, 167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksFajtr8%3D&md5=32d5ebdec4a80c89ab14784d017dfa66CAS |
[8] E. D. Giordano, A. Frinchaboy, A. G. Suárez, R. A. Spanevello, Org. Lett. 2012, 14, 4602.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Ghu7%2FJ&md5=f2484a8ce2cd6982f50a218fa1755a90CAS |
[9] A. Flourat, A. Peru, F. Teixeira, F. Brunissen, Allais, Green Chem. 2015, 17, 404.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2msLzJ&md5=a6e742d8d31386005d667b8305d2bf4aCAS |
[10] J. Sherwood, A. Constantinou, L. Moity, C. R. McElroy, T. J. Farmer, T. Duncan, W. Raverty, A. J. Hunt, J. H. Clark, Chem. Commun. 2014, 9650.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOnurnO&md5=cee614040a47c7463532f28977e9ec9aCAS |
[11] K. L. Wilson, A. R. Kennedy, J. Murray, B. Greatrex, C. Jamieson, A. J. Watson, Beilstein J. Org. Chem. 2016, 12, 2005.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslKjtbjL&md5=43ac8e82f971368707bde0507b1baf06CAS |
[12] R. R. A. Kitson, A. Millemaggi, R. J. K. Taylor, Angew. Chem. Int. Ed. 2009, 48, 9426.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFars7nE&md5=392b9a07a58ebb84d6e8720f0822f357CAS |
[13] K. Tomioka, T. Ishiguro, K. Koga, J. Chem. Soc. Chem. Commun. 1979, 652.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhvVSrur4%3D&md5=cd74ed3ce23ae83573112c658ee6e3e5CAS |
[14] F. Shafizadeh, R. H. Furneaux, T. T. Stevenson, Carbohydr. Res. 1979, 71, 169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXkvFWrtrY%3D&md5=72a7057f7ae4a255107b42b71c955061CAS |
[15] F. Shafizadeh, D. D. Ward, D. Pang, Carbohydr. Res. 1982, 102, 217.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XitFyisLk%3D&md5=9b72f323bb08d4ca1cbaa798fcab25a0CAS |
[16] K. P. Stockton, C. J. Merritt, C. J. Sumby, B. W. Greatrex, Eur. J. Org. Chem. 2015, 6999.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1elurbN&md5=096c09165765a359c0311466a1e26b1eCAS |
[17] B. D. Dorsey, R. B. Levin, S. L. McDaniel, J. P. Vacca, J. P. Guare, P. L. Darke, J. A. Zugay, E. A. Emini, W. A. Schleif, J. Med. Chem. 1994, 37, 3443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsV2ntg%3D%3D&md5=6ac30b86448d27da73e46b723e510627CAS |
[18] M. Boyd, Expert Opin. Pharmacother. 2007, 8, 957.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksl2ntr4%3D&md5=c7e648bf018606a03b5026de43df4095CAS |
[19] K. J. Stone, R. D. Little, J. Am. Chem. Soc. 1985, 107, 2495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXit1Shs7Y%3D&md5=8366e07e85237d88ef8bc26bdcb4505cCAS |
[20] P. E. Maligres, S. A. Weissman, V. Upadhyay, S. J. Cianciosi, R. A. Reamer, R. M. Purick, J. Sager, K. Rossen, K. K. Eng, D. Askin, R. P. Volante, P. J. Reider, Tetrahedron 1996, 52, 3327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtlOgsbg%3D&md5=c18a98b3bcbc61ec0a8da8c8aa148daaCAS |
[21] K. Rossen, R. A. Reamer, R. P. Volante, P. J. Reider, Tetrahedron Lett. 1996, 37, 6843.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVGis74%3D&md5=7589a49b6242179cc7a510e229045d8dCAS |
[22] D. W. Landry, M. Karayiorgou, S. Deng, U.S. Patent Application US 2015/0239831 2015.
[23] Z. Lu, S. Raghavan, J. Bohn, M. Charest, M. W. Stahlhut, C. A. Rutkowski, A. L. Simcoe, D. B. Olsen, W. A. Schleif, A. Carella, L. Gabryelski, L. Jin, J. H. Lin, E. Emini, K. Chapman, J. R. Tata, Bioorg. Med. Chem. Lett. 2003, 13, 1821.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1Kjtrs%3D&md5=90915e6703015dba7c37876df0d4176cCAS |
[24] R. Home, WO Patent Application WO2003030886A2 2003.
[25] V. Samet, D. N. Lutov, S. I. Firgang, K. A. Lyssenko, V. V. Semenov, Tetrahedron Lett. 2011, 52, 3026.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVWnur0%3D&md5=d01d95348da25962776fb1c15d2a9dfeCAS |
[26] T. Nishikawa, H. Araki, M. Isobe, Biosci. Biotechnol. Biochem. 1998, 62, 190.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXpsVGjug%3D%3D&md5=eebf282a62f13d9c41385d0ba5c27576CAS |
[27] M. Tanaka, H. Mitsuhashi, M. Maruno, T. Wakamatsu, Chem. Lett. 1994, 23, 1455.
| Crossref | GoogleScholarGoogle Scholar |
[28] P. Tsypysheva, F. A. Valeev, E. V. Vasil’eva, L. V. Spirikhin, G. A. Tolstikov, Russ. Chem. Bull. 2000, 49, 1237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntlChu70%3D&md5=cd58d12c3d60e231634a2dac826fefe3CAS |
[29] C. Marquis, F. Cardona, I. Robina, G. Wurth, P. Vogel, Heterocycles 2002, 56, 181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVKrsw%3D%3D&md5=aa0240bf4b8056d448cfc190aad02e9bCAS |
[30] R. Demange, C. Buhlmann, P. Vogel, Helv. Chim. Acta 2003, 86, 361.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVaqt7o%3D&md5=3a7bbb30cf55dc9d0cdf066f41faed1aCAS |
[31] V. K. Aggarwal, D. K. Dean, A. Mereu, R. Williams, J. Org. Chem. 2002, 67, 510.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlWjsrw%3D&md5=161a11ea672d3621f28fdf0834b90804CAS |