Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

High Catalytic Activity of Peptide Nanofibres Decorated with Ni and Cu Nanoparticles for the Synthesis of 5-Substituted 1H-Tetrazoles and N-Arylation of Amines

Arash Ghorbani-Choghamarani A B and Zahra Taherinia A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Ilam University, PO Box 69315516, Ilam, Iran.

B Corresponding author. Email: a.ghorbani@ilam.ac.ir

Australian Journal of Chemistry 70(10) 1127-1137 https://doi.org/10.1071/CH17176
Submitted: 30 March 2017  Accepted: 29 May 2017   Published: 11 July 2017

Abstract

A rapid development of a new methodology for decarboxylative N-arylation of carboxylic acids and the preparation of 5-substituted 1H-tetrazoles catalysed by peptide nanofibres decorated with Cu and Ni nanoparticles is presented. Compared with conventional aryl halides, benzoic acids are extremely interesting and environmentally friendly options for the synthesis of secondary aryl amines.


References

[1]  J. Safaei-Ghomi, Z. Akbarzadeh, B. Khojastehbakht-Koopaei, RSC Adv. 2015, 5, 28879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksV2ksL4%3D&md5=15583c2f4cc39a630cb9b11f4fbc0169CAS |

[2]  K. Karami, N. Haghighat Naeini, Turk. J. Chem. 2015, 39, 1199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XisVKnt7k%3D&md5=cd6b93913e330fa6707badef32b0c25aCAS |

[3]  P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFymu7bJ&md5=37db2c7465adbc2fc973bf8786726717CAS |

[4]  N. Barot, S. B. Patel, H. Kaur, J. Mol. Catal. Chem. 2016, 423, 77.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVKnsrnF&md5=682a19cfe1af1adb2a384489e83f2c40CAS |

[5]  M. Mondal, S. K. Bharadwaj, U. Bora, New J. Chem. 2015, 39, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyksLvL&md5=03273a1c14d5c0c29089fc27311917c9CAS |

[6]  A. P. Liesen, A. T. Silva, J. C. Sousa, P. H. Menezes, R. A. Oliveira, Tetrahedron Lett. 2012, 53, 4240.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Kgtbg%3D&md5=ecf97e65f5c45b126579b3c2df05ac92CAS |

[7]  T. Habu, N. Mii, K. Kuge, H. Manto, Y. Takamuki, J. Imaging Sci. 1991, 35, 202.
         | 1:CAS:528:DyaK3MXlt1eltL4%3D&md5=1052247e6ad197e3854c706d784191abCAS |

[8]  A. H. Davulcu, D. D. McLeod, J. Li, K. Katipally, A. Littke, W. Doubleday, Z. M. Xu, C. W. McConlogue, C. J. Lai, M. Gleeson, M. Schwinden, R. L. Parsons, J. Org. Chem. 2009, 74, 4068.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFeku70%3D&md5=df039e475898c284cbcac5c62b243019CAS |

[9]  D. M. Zimmerman, R. A. Olofson, Tetrahedron Lett. 1969, 10, 5081.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  W. G. Finnegan, R. A. Henry, E. Lieber, J. Org. Chem. 1953, 18, 779.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXjvFWksw%3D%3D&md5=e036461f9425831a0e277d2fe731326cCAS |

[11]  D. Habibi, M. Nasrollahzadeh, L. Mehrabi, S. Mostafaee, Monatsh. Chem. 2013, 144, 725.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVWlsbo%3D&md5=c1b7dc20ff7e6aa09f01de68be651243CAS |

[12]  A. R. Kazemizadeh, N. Hajaliakbarib, R. Hajianb, N. Shajaria, A. Ramaza, Helv. Chim. Acta 2012, 95, 594.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFSnurs%3D&md5=e46fea83d3f18d215d948b8d37cbd923CAS |

[13]  P. Mani, A. K. Singh, S. K. Awasthi, Tetrahedron Lett. 2014, 55, 1879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtVGgu74%3D&md5=8a4b803695255499c3f7f03343873318CAS |

[14]  M. Parveen, F. Ahmad, A. M. Malla, S. Azaz, New J. Chem. 2015, 39, 2028.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtleiuw%3D%3D&md5=3ff5b0d9e55fe4fa86e51439546654fdCAS |

[15]  A. Kumar, R. Narayanan, H. Shechter, J. Org. Chem. 1996, 61, 4462.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktFygtrc%3D&md5=444543bf287eb57ee7654b96007fe8b2CAS |

[16]  S. Hajra, D. Sinha, M. Bhowmick, J. Org. Chem. 2007, 72, 1852.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlemtLo%3D&md5=d2d727bf7c55f5656c649d769c693f87CAS |

[17]  M. Nikoorazm, A. Ghorbani-Choghamarani, M. Khanmoradi, Appl. Organomet. Chem. 2016, 30, 705.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpsF2qu74%3D&md5=f6690fa780478954a41fcc7f970e7ee2CAS |

[18]  A. Ghorbani-Choghamarani, L. Shiri, G. Azadi, RSC Adv. 2016, 6, 32660.

[19]  D. Habibi, M. Nasrollahzadeh, Y. Bayat, Synth. Commun. 2011, 41, 2135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtl2ltLw%3D&md5=2a01f7245d31199328721548ffe4eb93CAS |

[20]  G. Venkateshwarlu, A. Premalatha, K. C. Rajanna, P. K. Saiprakash, Synth. Commun. 2009, 39, 4479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKitL7K&md5=60a9461daa794f368a145b64fa984107CAS |

[21]  A. N. Chermahini, A. Teimouri, F. Momenbeik, A. Zarei, Z. Dalirnasab, A. Ghaedi, M. Roosta, J. Heterocycl. Chem. 2010, 47, 913.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1GisLw%3D&md5=a22697888348968482df171f8f425d71CAS |

[22]  M. Zaarour, M. El Roz, B. Dong, R. Retoux, R. Aad, J. Cardin, C. Dufour, F. Gourbilleau, J.-P. Gilson, S. Mintova, Langmuir 2014, 30, 6250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXns1CmsLc%3D&md5=3a3e5f9866f3f3b482dcce71fc878cecCAS |

[23]  R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang, C. Wang, J. Liu, J. Am. Chem. Soc. 2011, 133, 2541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Cqurs%3D&md5=9552970cd167b18dad477c3476cb6bfdCAS |

[24]  C. M. Crudden, M. Sateesh, R. Lewis, J. Am. Chem. Soc. 2005, 127, 10045.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlyrtrc%3D&md5=2c7cbe42a42ef0d0bc43db33a05cdfe6CAS |

[25]  M. Egashira, H. Takatsuji, S. Okada, J. Yamaki, J. Power Sources 2002, 107, 56.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFyqt7c%3D&md5=ab022519769bc043307b37580ff70a3bCAS |

[26]  B. Xue, P. Chen, Q. Hong, J. Lin, K. L. Tan, J. Mater. Chem. 2001, 11, 2378.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1Ckt7g%3D&md5=6f3e0de63e3820f734fcf815f6281400CAS |

[27]  A. Ghorbani-Choghamarani, Z. Taherinia, RSC Adv. 2016, 6, 9410.

[28]  S. Zhang, Biotechnology 2004, 22, 151.
         | 1:CAS:528:DC%2BD2cXnvFaqtQ%3D%3D&md5=3c29e6c450fda994201b6c39da291aceCAS |

[29]  H. Zhao, Y. Wei, J. Xu, J. Kan, W. Su, M. Hong, J. Org. Chem. 2011, 76, 882.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFKgtw%3D%3D&md5=e4fe083ab82953b0a4181bf710b27aedCAS |

[30]  Z. Duan, S. Ranjit, P. Zhang, X. Liu, Chem. – Eur. J. 2009, 15, 3666.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksleisLw%3D&md5=babd29a6092730b616e7a86a608bcc97CAS |

[31]  S. Bhadra, W. Dzik, L. Gooßen, Angew. Chem. Int. Ed 2013, 52, 2959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGnurg%3D&md5=4eb5377e9516d3eb7205b73cc7710944CAS |

[32]  Y. Zhang, S. Patel, N. Mainolfi, Chem. Sci. 2012, 3, 3196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVGhsrzJ&md5=a2c38a262378bf114074d12354d0a4e3CAS |

[33]  W. Xin, D. Zhu, G. Liu, Y. Hua, W. Zhou, Int. J. Photoenergy 2012, 2012, 767905.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  C. Anitha, C. D. Sheela, P. Tharmaraj, R. Shanmugakala, Int. J. Inorg. Chem. 2012, 2012, 7.

[35]  A. Najafi Chermahini, M. K. Omran, H. A. Dabbagh, G. Mohammadnezhad, A. Teimouri, New J. Chem. 2015, 39, 4814.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmt1WqsLo%3D&md5=de431e254efaa98b7231d5a21be50b5fCAS |

[36]  I. Esirden, E. Basar, M. Kaya, Chem. Pap. 2015, 69, 1231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXps1Oksrs%3D&md5=558dfbe55055d22cabbf44411db88a12CAS |

[37]  L. Zamani, B. B. F. Mirjalili, K. Zomorodian, S. Zomorodian, S. Afr, J. Chem. 2015, 68, 133.
         | 1:CAS:528:DC%2BC2MXhvVaksb3K&md5=811d462ac8bbf5e793000e266f4c46a2CAS |

[38]  H. M. Nanjundaswamy, H. Abrahamse, Heterocycles 2014, 89, 2137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVOrtr7F&md5=a777c75022c4f345127f37124215e705CAS |

[39]  X. Guo, H. Rao, H. Fu, Y. Jiang, Y. Zhao, Adv. Synth. Catal. 2006, 348, 2197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFygu7zF&md5=c8083e6456639ae2c9ed58e4a3e316aaCAS |

[40]  Q. Zhang, C. Liu, J. Shi, Q. Xu, L. Jin, C. Zhao, T. Zhang, Synlett 2016, 27, 1945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XntlKgsbc%3D&md5=0ce642cfc3e877d72afc599f07496905CAS |

[41]  R. A. Altman, K. W. Anderson, S. L. Buchwald, J. Org. Chem. 2008, 73, 5167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVyns7Y%3D&md5=dfd6c49e426f8a58919671c81db13f3aCAS |

[42]  L. Ackermann, R. Sandmann, W. Song, Org. Lett. 2011, 13, 1784.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWlt7Y%3D&md5=7f02115a6298849707521afaa3134f8cCAS |

[43]  N. S. Nandurkar, M. J. Bhanushali, M. D. Bhor, B. M. Bhanage, Tetrahedron Lett. 2007, 48, 6573.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1eqtb8%3D&md5=34c6a769a3c7f8170dc22fd570d3ca12CAS |

[44]  M. A. Carroll, R. A. Wood, Tetrahedron 2007, 63, 11349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFeltL%2FE&md5=a8e9f946062a095a657ff007ca9d1a1cCAS |

[45]  L. Rout, P. Saha, S. Jammi, T. Punniyamurthy, Adv. Synth. Catal. 2008, 350, 395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFOjs7s%3D&md5=94e5e8fbe821d79bf3c1829382f905e7CAS |

[46]  F. Y. Kwong, A. Klapars, S. L. Buchwald, Org. Lett. 2002, 4, 581.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVCqsg%3D%3D&md5=7048eafdcc39c50e74450d9c33e39b7fCAS |

[47]  P. Spagnolo, P. Zanirato, J. Chem. Soc., Perkin Trans. 1 1988, 2615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXpsFWisg%3D%3D&md5=29b8e26976493b2c19b759a84e6d4f8cCAS |

[48]  H. Rao, H. Fu, Y. Jiang, Y. Zhao, J. Org. Chem 2005, 70, 8107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1WhtLs%3D&md5=7e799770652a11d1be17c14951479b05CAS |

[49]  D. Maiti, B. P. Fors, J. L. Henderson, Y. Nakamura, S. L. Buchwald, Chem. Sci. 2011, 2, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFWqsbjF&md5=3f59997b9be0c7c546896ef75187722fCAS |

[50]  S. Miyano, N. Abe, A. Uno, Chem. Pharm. Bull. 1966, 14, 731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXit12i&md5=7faad3bccad1e98290122e9a105d07f7CAS |

[51]  M. Abdollahi Alibeik, A. Moaddeli, New J. Chem. 2015, 39, 2116.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFOgtbjF&md5=2bd258ec51daeda8e2959e5066993ab0CAS |

[52]  M. Zarghani, B. Akhlaghinia, RSC Adv. 2015, 5, 87769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFOrt77I&md5=c3aae9710fd135e234d878457777af19CAS |