Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Engineering Isoreticular 2D Metal–Organic Frameworks with Inherent Structural Flexibility

Alexandre Burgun A , Witold M. Bloch A B , Christian J. Doonan A C and Christopher J. Sumby A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Centre for Advanced Nanomaterials, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

B Current address: Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany.

C Corresponding authors. Email: christian.doonan@adelaide.edu.au; christopher.sumby@adelaide.edu.au

Australian Journal of Chemistry 70(5) 566-575 https://doi.org/10.1071/CH16663
Submitted: 25 November 2016  Accepted: 4 January 2017   Published: 27 January 2017

Abstract

The chemical mutability of metal–organic frameworks (MOFs) is an advantageous feature that allows fine-tuning of their physical and chemical properties. Herein, we report the successful isoreticulation of a MOF with an outstanding gas selectivity for CO2 versus N2: [Cu(L1)(H2O)]·xS (CuL1), where H2L1 = bis(4-(4-carboxyphenyl)-1H-pyrazolyl)methane) and S = solvate. By modifying the steric bulk and length of the original ligand, we synthesised three new MOFs with 2D networks isoreticular to CuL1, namely [Cu(L1Me)(H2O)]·xS (CuL1Me), [Cu(L2)(H2O)]·xS (CuL2), and [Cu(L2Me)(H2O)]·xS (CuL2Me) (where H2L1Me = bis(4-(4-carboxyphenyl)-3,5-dimethyl-1H-pyrazolyl)methane, H2L2 = bis(4-(4-carboxyphenyl)-(ethyne-2,1-yl)-1H-pyrazolyl)methane, and H2L2Me = bis(4-(4-carboxyphenyl)-(ethyne-2,1-yl)-3,5-dimethyl-1H-pyrazolyl)methane). Depending on the steric hindrance and structure metrics of the organic links, staggered and eclipsed arrangements of 2D 44 net layers were obtained. The anisotropy of the pore dimensions is proportional to the linker length (L2 and L2Me), which when increased, renders these materials non-porous. However, the more sterically demanding ligand L1Me gives a material that shows gate-opening behaviour in response to a CO2 absorbate. The synthesis and structure of an unexpected mixed-valence CuII/CuI 3D MOF, Cu3[Cu(L2Me)2]2(H2O)4xS (Cu5(L2Me)4), containing an unusual trimeric CuII node are also reported.


References

[1]  (a) H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013, 341, 974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlaktbbF&md5=5cf36f015af8baeb4fb4ddb133afd551CAS |
      (b) G. Férey, Chem. Soc. Rev. 2008, 37, 191.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. O’Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li, H.-C. Zhou, Chem. Soc. Rev. 2016, 45, 2327.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGnt7vK&md5=280b3227e256bfb26db5ec1bbcc0a38bCAS |
      (b) S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Kitagawa, K. Uemura, Chem. Soc. Rev. 2005, 34, 109.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Kitagawa, R. Matsuda, Coord. Chem. Rev. 2007, 251, 2490.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Z. Chang, D.-H. Yang, J. Xu, T.-L. Hu, X.-H. Bu, Adv. Mater. 2015, 27, 5432.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) S. Sakaida, K. Otsubo, O. Sakata, C. Song, A. Fujiwara, M. Takata, S. Kitagawa, Nat. Chem. 2016, 8, 377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktFGrtb0%3D&md5=6e29969da6cd25401ff869bf691dc994CAS |
      (b) B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi, S. Dai, Angew. Chem. Int. Ed. 2006, 45, 1390.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Henke, A. Schneemann, R. A. Fischer, Adv. Funct. Mater. 2013, 23, 5990.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) R. Kitaura, K. Seki, G. Akiyama, S. Kitagawa, Angew. Chem. Int. Ed. 2003, 42, 428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFKgtLY%3D&md5=8e32a4f5e458cf60f18c9dde714d77dcCAS |
      (b) X.-M. Liu, R.-B. Lin, J.-P. Zhang, X.-M. Chen, Inorg. Chem. 2012, 51, 5686.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) K. Uemura, S. Kitagawa, M. Kondo, K. Fukui, R. Kitaura, H.-C. Chang, T. Mizutani, Chem. – Eur. J. 2002, 8, 3586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmslequro%3D&md5=06871c44bc027b5aefc450edb4516f0aCAS |
      (b) D. Li, K. Kaneko, Chem. Phys. Lett. 2001, 335, 50.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  K. Biradha, Y. Hongo, M. Fujita, Angew. Chem. Int. Ed. 2002, 41, 3395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFKntrY%3D&md5=64d0a408ae7b8e73265d4a4a148823f1CAS |

[7]  (a) P. Kanoo, G. Mostafa, R. Matsuda, S. Kitagawa, T. K. Maji, Chem. Commun. 2011, 8106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlyqt7s%3D&md5=2db4beee3cd784722ac5cb6a1e1c0957CAS |
      (b) A. Kondo, H. Noguchi, S. Ohnishi, H. Kajiro, A. Tohdoh, Y. Hattori, W.-C. Xu, H. Tanaka, H. Kanoh, K. Kaneko, Nano Lett. 2006, 6, 2581.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Kondo, H. Noguchi, L. Carlucci, D. M. Proserpio, G. Ciani, H. Kajiro, T. Ohba, H. Kanoh, K. Kaneko, J. Am. Chem. Soc. 2007, 129, 12362.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) R. Ricco, C. Pfeiffer, K. Sumida, C. J. Sumby, P. Falcaro, S. Furukawa, N. R. Champness, C. J. Doonan, CrystEngComm 2016, 18, 6532.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVCjur7I&md5=6372d2717ce4d3f52fb46d46ee1e5dcaCAS |
      (b) O. M. Linder-Patton, W. M. Bloch, C. J. Coghlan, K. Sumida, S. Kitagawa, S. Furukawa, C. J. Doonan, C. J. Sumby, CrystEngComm 2016, 18, 4172.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Sakata, S. Furukawa, M. Kondo, K. Hirai, N. Horike, Y. Takashima, H. Uehara, N. Louvain, M. Meilikhov, T. Tsuruoka, S. Isoda, W. Kosaka, O. Sakata, S. Kitagawa, Science 2013, 339, 193.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Zhang, J. A. Gee, D. S. Sholl, R. P. Lively, J. Phys. Chem. C 2014, 118, 20727.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) P. Kanoo, R. Sambhu, T. K. Maji, Inorg. Chem. 2011, 50, 400.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOqtrnE&md5=eee0a1d6db8d77833ecbf00aa2e0d07bCAS |
      (b) H.-S. Choi, M. P. Suh, Angew. Chem. Int. Ed. 2009, 48, 6865.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) W. M. Bloch, C. J. Sumby, Chem. Commun. 2012, 2534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2jt7s%3D&md5=9fcb31cda3f585eb0f188163b617926fCAS |
      (b) T. D. Keene, D. Rankine, J. D. Evans, P. D. Southon, C. J. Kepert, J. B. Aitken, C. J. Doonan, C. J. Sumby, Dalton Trans. 2013, 7871.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Du, X.-G. Wang, Z.-H. Zhang, L.-F. Tang, X.-J. Zhao, CrystEngComm 2006, 8, 788.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Du, Z.-H. Zhang, X.-G. Wang, L.-F. Tang, X.-J. Zhao, CrystEngComm 2008, 10, 1855.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) W. M. Bloch, R. Babarao, M. R. Hill, C. J. Doonan, C. J. Sumby, J. Am. Chem. Soc. 2013, 135, 10441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVehsLk%3D&md5=87e4f2c1b3a8193376a48c6fb8e9b2c6CAS |
      (b) W. M. Bloch, C. J. Doonan, C. J. Sumby, CrystEngComm 2013, 15, 9663.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) W. M. Bloch, A. Burgun, C. J. Coghlan, R. Lee, M. L. Coote, C. J. Doonan, C. J. Sumby, Nat. Chem. 2014, 6, 906.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFKms7rO&md5=e64df5bc5f2932cbaa20ab2788bc8b5eCAS |
      (b) W. M. Bloch, A. Burgun, C. J. Doonan, C. J. Sumby, Chem. Commun. 2015, 5486.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. M. Bloch, C. J. Sumby, Supramol. Chem. 2015, 27, 807.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  A. S. Potapov, A. I. Khlebnikov, S. F. Valisevskii, Russ. J. Org. Chem. 2006, 42, 1368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVygs7jM&md5=f9d5df4a666c80e5d8b07f3dce59e7a1CAS |

[14]  W. B. Austin, N. Bilow, W. J. Kelleghan, K. S. Y. Lau, J. Org. Chem. 1981, 46, 2280.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVKlt7o%3D&md5=c08f064c6ac2e5b98d55ae36b8fd9552CAS |

[15]  G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.

[17]  L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOlsb8%3D&md5=682ce5496904050d0ad009b9e87955aaCAS |

[18]  A. L. Spek, Acta Crystallogr. Sect. C 2015, 71, 9.
         | 1:CAS:528:DC%2BC2MXjvFejtw%3D%3D&md5=be6f61c90f6a41c4b22af8a29c1a831bCAS |

[19]  A. L. Spek, Acta Crystallogr. Sect. D 2009, 65, 148.
         | 1:CAS:528:DC%2BD1MXhtVWhtL8%3D&md5=5d090f9e49bbb2fa678c963de0a98ab1CAS |

[20]  G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology 2001 (Oxford University Press: New York, NY).

[21]  J. Cirera, P. Alemany, S. Alvarez, Chem. – Eur. J. 2004, 10, 190.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVGhtQ%3D%3D&md5=218aed447a07600d9bd0ae38b53a6d22CAS |

[22]  (a) H. Zhao, Z.-R. Qu, Q. Ye, X.-S. Wang, J. Zhang, R.-G. Xiong, X.-Z. You, Inorg. Chem. 2004, 43, 1813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFSgs7w%3D&md5=7c984aef3f9cf6e01a5ddda7224b88d4CAS |
      (b) Y.-H. Liu, L.-P. Lu, M.-L. Zhu, F. Su, Acta Crystallogr. Sect. C 2016, 72, 358.
      (c) K. A. Vinogradova, V. P. Krivopalov, E. B. Nikolaenkova, N. V. Pervukhina, D. Yu. Naumov, E. G. Boguslavsky, M. B. Bushuev, Dalton Trans. 2016, 515.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  (a) D. Sadhukhan, C. Rizzoli, E. Garribba, C. J. Gómez-Garcia, A. Yahia-Ammar, L. J. Charbonnière, S. Mitra, Dalton Trans. 2012, 11565.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlamsLnM&md5=da0611d027e3bf64f418c0f3d8dfea6aCAS |
      (b) F. Xu, T. Tao, K. Zhang, X.-X. Wang, W. Huang, X.-Z. You, Dalton Trans. 2013, 3631.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Kanta Das, C. Diaz, A. Ghosh, Cryst. Growth Des. 2015, 15, 3939.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  (a) K. C. Stylianou, J. E. Warren, S. Y. Chong, J. Rabone, J. Bacsa, D. Bradshaw, M. J. Rosseinsky, Chem. Commun. 2011, 3389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVWltrY%3D&md5=49da2d3698442c32d63ba3af3682cf6fCAS |
      (b) S. S. Iremonger, J. Liang, R. Vaidhyanathan, G. K. H. Shimizu, Chem. Commun. 2011, 4430.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  K. S. Walton, R. Q. Snurr, J. Am. Chem. Soc. 2007, 129, 8552.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms12gur0%3D&md5=58e0e79847920b31531446ca87ec5b83CAS |