Salicylaldehyde Hydrazones: Buttressing of Outer-Sphere Hydrogen-Bonding and Copper Extraction Properties
Benjamin D. Roach A , Tai Lin A , Heiko Bauer B , Ross S. Forgan A , Simon Parsons A , David M. Rogers A , Fraser J. White A and Peter A. Tasker A CA School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK.
B Fachbereich Chemie, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany.
C Corresponding author. Email: p.a.tasker@ed.ac.uk
Australian Journal of Chemistry 70(5) 556-565 https://doi.org/10.1071/CH16639
Submitted: 11 November 2016 Accepted: 3 January 2017 Published: 1 February 2017
Abstract
Salicylaldehyde hydrazones are weaker copper extractants than their oxime derivatives, which are used in hydrometallurgical processes to recover ~20 % of the world’s copper. Their strength, based on the extraction equilibrium constant Ke, can be increased by nearly three orders of magnitude by incorporating electron-withdrawing or hydrogen-bond acceptor groups (X) ortho to the phenolic OH group of the salicylaldehyde unit. Density functional theory calculations suggest that the effects of the 3-X substituents arise from a combination of their influence on the acidity of the phenol in the pH-dependent equilibrium, Cu2+ + 2Lorg ⇌ [Cu(L–H)2]org + 2H+, and on their ability to ‘buttress’ interligand hydrogen bonding by interacting with the hydrazone N–H donor group. X-ray crystal structure determination and computed structures indicate that in both the solid state and the gas phase, coordinated hydrazone groups are less planar than coordinated oximes and this has an adverse effect on intramolecular hydrogen-bond formation to the neighbouring phenolate oxygen atoms.
References
[1] P. J. Mackey, CIM Magazine 2007, 2, 35.[2] Michael Moser, personal communication, Cytec Solvay Group, Stamford, CT 06904, USA, 2016.
[3] A. M. Wilson, P. J. Bailey, P. A. Tasker, J. R. Turkington, R. A. Grant, J. B. Love, Chem. Soc. Rev. 2014, 43, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGktL%2FK&md5=5e091cb34654302b0c14a9cc20ae935dCAS |
[4] P. A. Tasker, P. G. Plieger, L. C. West, Comprehensive Coordination Chemistry II 2004 (Elsevier Ltd: Oxford).
[5] A. G. Smith, P. A. Tasker, D. J. White, Coord. Chem. Rev. 2003, 241, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVGku78%3D&md5=c97dc65c8db5eed4ad52bd59719b4c26CAS |
[6] R. S. Forgan, B. D. Roach, P. A. Wood, F. J. White, J. Campbell, D. K. Henderson, E. Kamenetzky, F. E. McAllister, S. Parsons, E. Pidcock, P. Richardson, R. M. Swart, P. A. Tasker, Inorg. Chem. 2011, 50, 4515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFyqurs%3D&md5=ebc9ed0f7e55f3ee2aa126769714c4c3CAS |
[7] R. S. Forgan, P. A. Wood, J. Campbell, D. K. Henderson, F. E. McAllister, S. Parsons, E. Pidcock, R. M. Swart, P. A. Tasker, Chem. Commun. 2007, 4940.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOgtLvM&md5=15eaeb6c3950ab0ea00d548f84d32ebdCAS |
[8] J. Szymanowski, A. Borowiak-Resterna, Crit. Rev. Anal. Chem. 1991, 22, 519.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlt1WhsrY%3D&md5=423ee14990365a91963d756fa00c91d4CAS |
[9] K. Burger, I. Egyed, J. Inorg. Nucl. Chem. 1965, 27, 2361.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXkvFegsbw%3D&md5=b7c5f6ead1e9128d05d5e396de42d8aaCAS |
[10] K. Burger, I. Egyed, Magy. Kem. Foly. 1965, 71, 143.
| 1:CAS:528:DyaF2MXktFegs74%3D&md5=23e19a70c6ea49ff72bdaca807f6e7e0CAS |
[11] J. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem. Int. Ed. Engl. 1995, 34, 1555.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXns1altLk%3D&md5=a5ac9e47aca9fe99ffeae23408e3dc41CAS |
[12] R. B. Singh, P. Jain, R. P. Singh, Talanta 1982, 29, 77.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xktlalu7w%3D&md5=e40d027a533dc5b66c0a792abcbe50a7CAS |
[13] M. P. Jain, S. Kumar, Indian J. Chem. Sect. A 1978, 16A, 464.
| 1:CAS:528:DyaE1cXltl2qsr8%3D&md5=2bd2275f7cc04dfb9dba555601d749a8CAS |
[14] L. Hunter, J. A. Marriott, J. Chem. Soc. 1937, 2000.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA1cXhtFOnsA%3D%3D&md5=10e165a2d5b97e03caf2a5a2f702098bCAS |
[15] T. V. Troepol’skaya, E. N. Munin, Z. S. Titova, Y. P. Kitaev, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1978, 27, 777.
| Crossref | GoogleScholarGoogle Scholar |
[16] R. S. Mandal, L. Mishra, Asian J. Chem. 2007, 19, 95.
| 1:CAS:528:DC%2BD28XhtlWgsbfF&md5=983295619905025b213c6b242c9d8eb6CAS |
[17] M. P. Jain, S. Kumar, Talanta 1982, 29, 52.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksVykurY%3D&md5=f4c698addb71426e94681169579a3df4CAS |
[18] N. Guskos, V. Likodimos, S. Glenis, J. Typek, M. Wabia, D. G. Paschalidis, I. Tossidis, C. L. Lin, J. Magn. Magn. Mater. 2004, 272–276, 1067.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. N. Rao, D. D. Mishra, R. C. Maurya, N. N. Rao, Polyhedron 1997, 16, 1825.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslGrtr8%3D&md5=f36db8c683979bfdd550fed9547d1902CAS |
[20] L. Larabi, Y. Harek, A. Reguig, M. M. Mostafa, J. Serb. Chem. Soc. 2003, 68, 85.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVChsLo%3D&md5=9561d0638b2bb16bc5f7bc726e28c00bCAS |
[21] F. Cariati, U. Caruso, R. Centore, W. Marcolli, A. De Maria, B. Panunzi, A. Roviello, A. Tuzi, Inorg. Chem. 2002, 41, 6597.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1aqur4%3D&md5=f44a124df5d92a2e12a8e5c93b4a5406CAS |
[22] P. G. Lacroix, Eur. J. Inorg. Chem. 2001, 339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVKltg%3D%3D&md5=633b3978f180b5b7f374790e990cb39aCAS |
[23] U. Caruso, R. Centore, B. Panunzi, A. Roviello, A. Tuzi, Eur. J. Inorg. Chem. 2005, 2747.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtF2lt7c%3D&md5=248976fa4e112f3d146aea96bd471756CAS |
[24] B.-D. Wang, Z.-Y. Yang, D.-W. Zhang, Y. Wang, Spectrochim. Acta Part A 2006, 63, 213.
| Crossref | GoogleScholarGoogle Scholar |
[25] A. Majumder, G. M. Rosair, A. Mallick, N. Chattopadhyay, S. Mitra, Polyhedron 2006, 25, 1753.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xktlynsb8%3D&md5=0095092ea7921f7a5684e262c14ebb57CAS |
[26] Y. Xiang, Z. Li, X. Chen, A. Tong, Talanta 2008, 74, 1148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVelsg%3D%3D&md5=3ef6f86e2cca83fe9f9ce0a405152c7dCAS |
[27] M. Bakir, C. Gyles, J. Mol. Struct. 2005, 753, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWqtbjI&md5=819a19e7eeb56c5e7211a8026737e716CAS |
[28] D. K. Johnson, T. B. Murphy, N. J. Rose, W. H. Goodwin, L. Pickart, Inorg. Chim. Acta 1982, 67, 159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXks1Gmsw%3D%3D&md5=5af42b0c8dcb2ff9aa6361990270013fCAS |
[29] J. E. Dubois, H. Fakhrayan, J. P. Doucet, J. M. El Hage Chahine, Inorg. Chem. 1992, 31, 853.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktlCnt70%3D&md5=f3c8a5e90b533abe750905bc79257250CAS |
[30] M. Mohan, A. Kumar, M. Kumar, N. K. Jha, Inorg. Chim. Acta 1987, 136, 65.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXls1OlsLo%3D&md5=584b7a875b61b0a222631e70b4a7bc20CAS |
[31] E. W. Ainscough, A. M. Brodie, A. J. Dobbs, J. D. Ranford, J. M. Waters, Inorg. Chim. Acta 1998, 267, 27.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFeltrs%3D&md5=e35e7d9bc8f15b63acbdf342b2a5901eCAS |
[32] M. Alagesan, N. S. P. Bhuvanesh, N. Dharmaraj, Dalton Trans. 2013, 42, 7210.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVCisrw%3D&md5=ce40381f07d26d17c38aa3742be2e8beCAS |
[33] X.-P. Ye, T.-F. Zhu, W.-N. Wu, T.-L. Ma, J. Xu, Z.-P. Zhang, Y. Wang, L. Jia, Inorg. Chem. Commun. 2014, 47, 60.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Grs7zL&md5=a30ff22181693293fc70107a1e16f33cCAS |
[34] J. Patole, U. Sandbhor, S. Padhye, D. N. Deobagkar, C. E. Anson, A. Powell, Bioorg. Med. Chem. Lett. 2003, 13, 51.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1Gjs7g%3D&md5=34dda1b174b2fb623f641a4a63e434e3CAS |
[35] A. Jamadar, A.-K. Duhme-Klair, K. Vemuri, M. Sritharan, P. Dandawate, S. Padhye, Dalton Trans. 2012, 41, 9192.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFKrsL4%3D&md5=2acf1c2f3a66194b1a16aa3e07ba55d1CAS |
[36] E. Massarani, D. Nardi, A. Tajana, L. Degen, J. Med. Chem. 1971, 14, 633.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXkslKnurs%3D&md5=663949d66a3865e6c7a0cf34aecb9eaeCAS |
[37] P. B. Sreeja, M. R. P. Kurup, A. Kishore, C. Jasmin, Polyhedron 2004, 23, 575.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCls7s%3D&md5=75a61a7da0da9357060a2e39b25e4131CAS |
[38] J. K. Sears, J. R. Darby, The Technology of Plasticizers 1982 (John Wiley and Sons: New York, NY).
[39] A. M. El-Hendawy, A. H. Al-Kubaisi, A. F. Shoair, Monatsh. Chem. 1995, 126, 1291.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVWksw%3D%3D&md5=0844b5a41d7746cda16e3e0c547392bbCAS |
[40] T. Mino, T. Ogawa, M. Yamashita, Heterocycles 2001, 55, 453.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitFWqtrs%3D&md5=93dca16265937cd5ab6bbbc0f30725fbCAS |
[41] T. Mino, Y. Shirae, M. Sakamoto, T. Fujita, J. Org. Chem. 2005, 70, 2191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSqur0%3D&md5=8da2cee9cf61fc2b555fcd8fe6f22141CAS |
[42] M. F. Iskander, T. E. Khalil, R. Werner, W. Haase, I. Svoboda, H. Fuess, Polyhedron 2000, 19, 949.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFymsLs%3D&md5=16c39d75a7017e58384fab83e50db744CAS |
[43] N. M. Samus, V. I. Tsapkov, A. V. Kerner, Russ. J. Gen. Chem. 2003, 73, 1611.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1ags7k%3D&md5=836b691336045a839bbb53dc37d4d845CAS |
[44] N. M. Samus, V. I. Prisakar, V. I. Tsapkov, S. A. Buracheva, A. P. Gulya, Pharm. Chem. J. 2004, 38, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvV2qtLs%3D&md5=4a180ccab2421f738d8daaf2bacea723CAS |
[45] S. Das, S. Pal, J. Mol. Struct. 2005, 753, 68.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWqtbjF&md5=697ea19b00d0ccad96bd1e357c9416e9CAS |
[46] L.-M. Wu, H.-B. Teng, X.-C. Feng, X.-B. Ke, Q.-F. Zhu, J.-T. Su, W.-J. Xu, X.-M. Hu, Cryst. Growth Des. 2007, 7, 1337.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFKju74%3D&md5=1efa1e17501bb529534e7755d96173a3CAS |
[47] R. J. Gordon, J. Campbell, D. K. Henderson, D. C. R. Henry, R. M. Swart, P. A. Tasker, F. J. White, J. L. Wood, L. J. Yellowlees, Chem. Commun. 2008, 4801.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2mtr3N&md5=cfa87769158ec7fc74f33576f4b7f3b6CAS |
[48] See pp. 1475–1480 in: R. J. Gordon, J. Campbell, D. C. R. Henry, R. M. Swart, P. A. Tasker, F. J. White, J. L. Wood, L. J. Yellowlees, Proceedings of the International Solvent Extraction Conference 2008 (Metallurgical Society of CIM: Montreal, Canada).
[49] R. Aldred, R. Johnston, D. Levin, J. Neilan, J. Chem. Soc., Perkin Trans. 1 1994, 1823.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXislakug%3D%3D&md5=13c747632a87c527bb1156e2c0efa10dCAS |
[50] F. Lam, J. X. Xu, K. S. Chan, J. Org. Chem. 1996, 61, 8414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmslCgurg%3D&md5=7a0e846631406fdd6df23efadc89b607CAS |
[51] D. F. Taber, S. Patel, T. M. Hambleton, E. E. Winkel, J. Chem. Educ. 2007, 84, 1158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFyjtrY%3D&md5=fa289bace0dbd7480c4648d5578bd916CAS |
[52] L. F. Lindoy, G. V. Meehan, N. Svenstrup, Synthesis 1998, 1029.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksFSrtb4%3D&md5=0b6df57034d0362531133ad388a1cc87CAS |
[53] J. Clayden, N. Greeves, S. Warren, W. Peter, Organic Chemistry 2001 (Oxford University Press: Oxford).
[54] V. A. Bren, T. M. Stul’neva, B. Y. Simkin, V. I. Minkin, Zh. Org. Khim. 1976, 12, 633.
| 1:CAS:528:DyaE28Xhsl2itr4%3D&md5=edee70c5a545b1806e84413d7b225d99CAS |
[55] G. Socrates, Trans. Faraday Soc. 1970, 66, 1052.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXktF2qtbg%3D&md5=48bbe5bf0c04f245ee4596727d116970CAS |
[56] Y. Tsuno, M. Fujio, Y. Takai, Y. Yukawa, Bull. Chem. Soc. Jpn. 1972, 45, 1519.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XkslCltb0%3D&md5=9ffe38dd9b80462fb2094507d4f9a72bCAS |
[57] D. H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry 1995 (McGraw-Hill Publishing Company: London).
[58] J. B. Hyne, Can. J. Chem. 1960, 38, 125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXlsVSjsQ%3D%3D&md5=44f78ce94a9d316707dfcaa060e3fd8aCAS |
[59] M. Onda, Y. Yamamoto, Y. Inoue, R. Chujo, Bull. Chem. Soc. Jpn. 1988, 61, 4015.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsFCksb0%3D&md5=70442e185bc7f60b27aa4f0b01ed7e71CAS |
[60] S. H. Gellman, G. P. Dado, G. B. Liang, B. R. Adams, J. Am. Chem. Soc. 1991, 113, 1164.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXotVOnsQ%3D%3D&md5=4a845d5bcf4bd3ebce338c2376ca2cafCAS |
[61] G. T. Crisp, Y.-L. Jiang, ARKIVOC 2001, 2, 77.
[62] M. R. Healy, J. W. Roebuck, E. D. Doidge, L. C. Emeleus, P. J. Bailey, J. Campbell, A. J. Fischmann, J. B. Love, C. A. Morrison, T. Sassi, D. J. White, P. A. Tasker, Dalton Trans. 2016, 45, 3055.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpsVWgsw%3D%3D&md5=a6c7c4b8c95cf4c8d901c224b0b378e8CAS |
[63] K. Henrick, P. A. Tasker, L. F. Lindoy, Prog. Inorg. Chem. 1985, 33, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtVCks74%3D&md5=258af6537811e30f572cedc862c2d68fCAS |
[64] P. A. Kollman, L. C. Allen, Chem. Rev. 1972, 72, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xkt1Crtb0%3D&md5=dc5c63315866d929f836efe4572b837bCAS |
[65] H. Umeyama, K. Morokuma, J. Am. Chem. Soc. 1977, 99, 1316.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXht1Oltrg%3D&md5=cbba2ec0c048db72959983d010439538CAS |
[66] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=cd069e9165ffddacc154f2d6ee26a63bCAS |
[67] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVSitbY%3D&md5=bbf11b61d118c610f2c097c0395e80d8CAS |
[68] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XptVemsw%3D%3D&md5=fb6bc0541a91f6e16d40b02077233cc7CAS |
[69] P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXhtFGnsL4%3D&md5=83b1ee15bccd8554786c88b08ea82f51CAS |
[70] T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer, J. Comput. Chem. 1983, 4, 294.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlt1ymsb8%3D&md5=f20601ba6310d5db03471ec2f38fca4aCAS |
[71] V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, L. A. Curtiss, J. Comput. Chem. 2001, 22, 976.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlGntrk%3D&md5=3570a0399a90f46d4fa2607b6e4c86caCAS |
[72] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision E.01 2009 (Gaussian, Inc.: Wallingford, CT).
[73] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01 2004 (Gaussian, Inc.: Wallingford, CT).