Transition Metal Thiocyanate Complexes of Picolylcyanoacetamides*
Yuniar P. Prananto A , Aron Urbatsch A , Boujemaa Moubaraki A , Keith S. Murray A , David R. Turner A , Glen B. Deacon A and Stuart R. Batten A BA School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
B Corresponding author. Email: stuart.batten@monash.edu
Australian Journal of Chemistry 70(5) 516-528 https://doi.org/10.1071/CH16648
Submitted: 15 November 2016 Accepted: 30 November 2016 Published: 9 February 2017
Abstract
A variety of transition metal complexes involving picolylcyanoacetamides (pica = NCCH2CONH-R; R = 2-picolyl- (2pica), 3-picolyl- (3pica), 4-picolyl- (4pica)) and thiocyanate have been synthesised and their solid-state structures have been determined. The complexes were all obtained from reactions between the corresponding metals salts and pica ligands with sodium thiocyanate under ambient conditions. Both 3pica and 4pica coordinate to the metal solely through the nitrogen atom of the picolyl group and form discrete tetrahedral [M(NCS)2(pica)2] (3pica; M = Mn, Zn; 4pica; M = Co) and octahedral [M(NCS)2(3pica)4] (M = Co, Fe, Ni) complexes. In addition, one-dimensional N,S-thiocyanate-bridged coordination polymers poly-[M(µ-NCS)2(pica)2] (3pica; M = Cd; 4pica; M = Co, Cd) were obtained. The ligand 2pica gave the discrete octahedral complexes [Co(NCS)2(2pica)2] and [Cd(NO3)2(2pica)2] in which 2pica chelates in a bidentate fashion through its picolyl and carbonyl groups. Magnetic susceptibility measurements on the cobalt(ii) complexes were performed and showed short-range antiferromagnetic coupling for the [Co(NCS)2(4pica)2]n 1D polymer.
References
[1] (a) F. M. Abdel-Galil, S. M. Sherif, M. H. Elnagdi, Heterocycles 1986, 24, 2023.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmslWmsA%3D%3D&md5=e9c2129db4d652bc0b9f6f2194e57df8CAS |
(b) A. A. Fadda, S. Bondock, R. Rabie, H. A. Etman, Turk. J. Chem. 2008, 32, 259.
[2] K. Wang, K. Nguyen, Y. Huang, A. Domling, J. Comb. Chem. 2009, 11, 920.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWrsr3M&md5=0a59f0a36708ca930036a5cdba969e2dCAS |
[3] (a) S. V. Kolotilov, D. Schollmeyer, L. K. Thompson, V. Golub, A. W. Addison, V. V. Pavlishchuk, Dalton Trans. 2008, 3007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVKisb4%3D&md5=43c5170442aa8f5ea022ba3ff7a564e6CAS |
(b) M. Conrad, A. Schulze, Ber. Dtsch. Chem. Ges. 1909, 42, 735.
| Crossref | GoogleScholarGoogle Scholar |
[4] D. R. Turner, A. S. R. Chesman, K. S. Murray, G. B. Deacon, S. R. Batten, Chem. Commun. 2011, 47, 10189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWqurvF&md5=26deed071d0254776369d6600d0a2caaCAS |
[5] C. M. Fitchett, P. J. Steel, Polyhedron 2007, 26, 400.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit12luw%3D%3D&md5=c41735d75ada78ce6fef4582bd03681aCAS |
[6] (a) A. S. R. Chesman, D. R. Turner, E. I. Izgorodina, S. R. Batten, G. B. Deacon, Dalton Trans. 2007, 1371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVGmu7o%3D&md5=fb070de060d865b4173d171566e2710cCAS |
(b) N. Gerasimchuk, T. Maher, P. Durham, K. V. Domasevitch, J. Wilking, A. Mokhir, Inorg. Chem. 2007, 46, 7268.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. S. R. Chesman, D. R. Turner, B. Moubaraki, K. S. Murray, G. B. Deacon, S. R. Batten, Chem. – Eur. J. 2009, 15, 5203.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. S. R. Chesman, D. R. Turner, B. Moubaraki, K. S. Murray, G. B. Deacon, S. R. Batten, Aust. J. Chem. 2009, 62, 1137.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. S. R. Chesman, D. R. Turner, B. Moubaraki, K. S. Murray, G. B. Deacon, S. R. Batten, Eur. J. Inorg. Chem. 2010, 59.
| Crossref | GoogleScholarGoogle Scholar |
(f) N. Gerasimchuk, A. Gamian, G. Glover, B. Szponar, Inorg. Chem. 2010, 49, 9863.
| Crossref | GoogleScholarGoogle Scholar |
(g) A. S. R. Chesman, D. R. Turner, B. Moubaraki, K. S. Murray, G. B. Deacon, S. R. Batten, Dalton Trans. 2012, 41, 10903.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) S. Wöhlert, I. Jess, U. Englert, C. Näther, CrystEngComm 2013, 15, 5326.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Boeckmann, B. Reimer, C. Näther, Z. Naturforsch. B: Chem. Sci. 2011, 66, 819.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Boeckmann, C. Näther, Acta Crystallogr. Sect. E: Struct. Rep. Online 2011, 67, m994.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Lipkowski, J. Coord. Chem. 1990, 22, 153.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Wöhlert, I. Jess, C. Näther, Inorg. Chim. Acta 2013, 407, 243.
| Crossref | GoogleScholarGoogle Scholar |
(f) W.-L. Pan, X.-L. Niu, W. Tang, C.-W. Hu, Acta Crystallogr. Sect. E: Struct. Rep. Online 2007, 63, m304.
| Crossref | GoogleScholarGoogle Scholar |
(g) Y. P. Xu, Y. Q. Liu, Russ. J. Coord. Chem. 2015, 41, 629.
| Crossref | GoogleScholarGoogle Scholar |
(h) J. Werner, I. Jess, C. Näther, Z. Naturforsch. B: Chem. Sci. 2013, 68, 643.
| Crossref | GoogleScholarGoogle Scholar |
(i) J. Werner, J. Boeckmann, C. Näther, Z. Anorg. Allg. Chem. 2012, 638, 2257.
(j) P. M. Secondo, J. M. Land, R. G. Baughman, H. L. Collier, Inorg. Chim. Acta 2000, 309, 13.
| Crossref | GoogleScholarGoogle Scholar |
(k) J. Werner, Z. Tomkowicz, T. Reinert, C. Näther, Eur. J. Inorg. Chem. 2015, 3066.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) J. Soldánová, M. Kabešová, J. Gažo, Inorg. Chim. Acta 1983, 76, L203.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. S. Antsyshkina, M. A. Porai-Koshits, G. G. Sadikov, M. Kabeshova, Y. Gazho, Russ. J. Coord. Chem. 1981, 7, 1018.
[9] E. Durcanska, T. Glowiak, J. Kozisek, Chem. Zvesti 1982, 36, 651.
| 1:CAS:528:DyaL3sXpvFWksg%3D%3D&md5=fb49f310332d110917122163d9ee2018CAS |
[10] J. G. Małecki, M. Bałanda, T. Groń, R. Kruszyński, Struct. Chem. 2012, 23, 1219.
| Crossref | GoogleScholarGoogle Scholar |
[11] L. Pang, E. A. C. Lucken, G. Bernardinelli, J. Am. Chem. Soc. 1990, 112, 8754.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtlSltLg%3D&md5=cccbf8b9b8d3e9dd7bf4a0fc4ea81c67CAS |
[12] (a) D. V. Soldatov, G. D. Enright, J. A. Ripmeester, Cryst. Growth Des. 2004, 4, 1185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFWmsrk%3D&md5=b478782e2e1fb8956365e6e31411cc50CAS |
(b) J. Lipkowski, J. Inclusion Phenom. Mol. Recog. Chem. 1990, 8, 439.
| Crossref | GoogleScholarGoogle Scholar |
[13] S.-F. Zhang, X.-G. Yang, Z. Liu, F.-L. Xu, B.-R. Hou, Acta Crystallogr. Sect. E: Struct. Rep. Online 2007, 63, m2058.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFKhs7g%3D&md5=d36c2d7a0de525ff500ffed825b92a16CAS |
[14] X.-R. Zhang, J.-L. Jia, X.-M. Li, S.-S. Zhang, Acta Crystallogr. Sect. E: Struct. Rep. Online 2006, 62, m185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVart7k%3D&md5=f6be048a98ffe55d5088c503f3bcf193CAS |
[15] J. Boeckmann, C. Näther, Polyhedron 2012, 31, 587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Cgs7zF&md5=3c215f2a27bae172662804b34bb84224CAS |
[16] M. A. Porai-Koshits, G. N. Tishchenko, Kristallogr. 1960, 4, 239.
[17] (a) J. Boeckmann, I. Jess, C. Nather, Acta Crystallogr. Sect. E: Struct. Rep. Online 2011, 67, m481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFyntbY%3D&md5=211c8589925915b8405bd0d8ee3a8636CAS |
(b) S. Wohlert, J. Boeckmann, I. Jess, C. Nather, CrystEngComm 2012, 14, 5412.
| Crossref | GoogleScholarGoogle Scholar |
[18] Z. Kožíšková, J. Kožišek, M. Kabešová, Polyhedron 1990, 9, 1029.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) R. Marsh, Acta Crystallogr. B 1995, 51, 897.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Taniguchi, M. Shimoi, A. Ouchi, Bull. Chem. Soc. Jpn. 1986, 59, 2299.
| Crossref | GoogleScholarGoogle Scholar |
[20] B. Machura, A. Świtlicka, J. Mroziński, B. Kalińska, R. Kruszynski, Polyhedron 2013, 52, 1276.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVegurfI&md5=f6493a2da3ba0a08617d455259474877CAS |
[21] (a) B. N. Figgis, M. A. Hitchman, Ligand Field Theory and its Applications 1999 (Wiley-VCH: Weinheim).
(b) O. Kahn, Molecular Magnetism 1993 (Wiley-VCH: Weinheim).
[22] J.-M. Shi, J.-N. Chen, C.-J. Wu, J.-P. Ma, J. Coord. Chem. 2007, 60, 2009.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslWru7Y%3D&md5=8b912de95b64eb7164b284efe62017d6CAS |
[23] (a) J. Palion-Gazda, B. Machura, F. Lloret, M. Julve, Cryst. Growth Des. 2015, 15, 2380.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksFSksbo%3D&md5=68777d530a0036ab37eefbb0470afccdCAS |
(b) G. A. Baker, G. S. Rushbrooke, H. E. Gilbert, Phys. Rev. 1964, 135, A1272.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) S. R. Marshall, C. D. Incarvito, J. L. Manson, A. Rheingold, J. S. Miller, Inorg. Chem. 2000, 39, 1969.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitF2gs70%3D&md5=6c5433b4e0e34a24fd282620b9500019CAS |
(b) S. R. Batten, K. S. Murray, Coord. Chem. Rev. 2003, 246, 103.
| Crossref | GoogleScholarGoogle Scholar |
[25] N. P. Cowieson, D. Aragao, M. Clift, D. J. Ericsson, C. Gee, S. J. Harrop, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Williamson, T. Caradoc-Davies, J. Synchrotron Radiat. 2015, 22, 187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFeitLrO&md5=1fa8616ba4d7c15fb07b883d272d433eCAS |
[26] Bruker AXS Ltd, APEX2 2005 (Bruker: Madison, WI).
[27] G. M. Sheldrick, SADABS 1996 (University of Goettingen: Goettingen).
[28] Agilent, CrysAlis PRO 2014 (Agilent Technologies Ltd: Yarnton, Oxfordshire, England).
[29] T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=4b06744951e5db9160e97e445120839fCAS |
[30] W. Kabsch, J. Appl. Cryst. 1993, 26, 795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptFeltw%3D%3D&md5=41fdf6dde8b26cd71d73ba3ebf3584cdCAS |
[31] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=933d4ded754510f3d6dd59e45c48aab3CAS |
[32] L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOlsb8%3D&md5=682ce5496904050d0ad009b9e87955aaCAS |