Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Directionality and the Role of Polarization in Electric Field Effects on Radical Stability

Ganna Gryn’ova A B and Michelle L. Coote A C
+ Author Affiliations
- Author Affiliations

A Australian Research Council Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.

B Current address: Institut des Sciences et Ingénierie Chimiques, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

C Corresponding author. Email: michelle.coote@anu.edu.au

Australian Journal of Chemistry 70(4) 367-372 https://doi.org/10.1071/CH16579
Submitted: 11 October 2016  Accepted: 1 November 2016   Published: 2 December 2016

Abstract

Accurate quantum-chemical calculations are used to analyze the effects of charges on the kinetics and thermodynamics of radical reactions, with specific attention given to the origin and directionality of the effects. Conventionally, large effects of the charges are expected to occur in systems with pronounced charge-separated resonance contributors. The nature (stabilization or destabilization) and magnitude of these effects thus depend on the orientation of the interacting multipoles. However, we show that a significant component of the stabilizing effects of the external electric field is largely independent of the orientation of external electric field (e.g. a charged functional group, a point charge, or an electrode) and occurs even in the absence of any pre-existing charge separation. This effect arises from polarization of the electron density of the molecule induced by the electric field. This polarization effect is greater for highly delocalized species such as resonance-stabilized radicals and transition states of radical reactions. We show that this effect on the stability of such species is preserved in chemical reaction energies, leading to lower bond-dissociation energies and barrier heights. Finally, our simplified modelling of the diol dehydratase-catalyzed 1,2-hydroxyl shift indicates that such stabilizing polarization is likely to contribute to the catalytic activity of enzymes.


References

[1]  S. L. Boyd, R. J. Boyd, P. W. Bessonette, D. I. Kerdraon, N. T. Aucoin, J. Am. Chem. Soc. 1995, 117, 8816.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVKrurg%3D&md5=76528eff4556af4de3d9ca44de44a549CAS |

[2]  (a) W. M. Nau, J. Phys. Org. Chem. 1997, 10, 445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltlGmu7c%3D&md5=2cf346044f0e00060b87cd812b661725CAS |
      (b) J. Hioe, H. Zipse, Org. Biomol. Chem. 2010, 8, 3609.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) B. S. Brunschwig, C. Creutz, N. Sutin, Chem. Soc. Rev. 2002, 31, 168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlylsrY%3D&md5=eb45d066d3440860b92d523c8753733bCAS |
      (b) S. F. Nelsen, A. E. Konradsson, Y. Teki, J. Am. Chem. Soc. 2006, 128, 2902.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) P. M. Mayer, M. N. Glukhovtsev, J. W. Gauld, L. Radom, J. Am. Chem. Soc. 1997, 119, 12889.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) P. M. Mayer, L. Radom, J. Phys. Chem. A 1998, 102, 4918.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Morris, B. Chan, L. Radom, J. Phys. Chem. A 2012, 116, 12381.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Morris, B. Chan, L. Radom, J. Phys. Chem. A 2014, 118, 2810.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  J. Ho, M. L. Coote, C. J. Easton, Aust. J. Chem. 2011, 64, 403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVCrs70%3D&md5=e3b5fa924ab847ca7af5827eeddec379CAS |

[6]  S. Shaik, D. Mandal, R. Raman, Nature Chem. Oriented electric fields as future smart reagents in chemistry
         | Nature Chem. Oriented electric fields as future smart reagents in chemistryCrossref | GoogleScholarGoogle Scholar |

[7]  G. Gryn’ova, D. L. Marshall, S. J. Blanksby, M. L. Coote, Nat. Chem. 2013, 5, 474.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Whtr4%3D&md5=927ed8befb7f0334f25e50f800a14774CAS |

[8]  G. Gryn’ova, M. L. Coote, J. Am. Chem. Soc. 2013, 135, 15392.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVynsrnI&md5=029c50276446ffa1033e1e3acbd09806CAS |

[9]  (a) W. Lai, H. Chen, K.-B. Cho, S. Shaik, J. Phys. Chem. Lett. 2010, 1, 2082.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1yms7w%3D&md5=bb336dc289fc852f5ab4d420fe26f093CAS |
      (b) R. Meir, H. Chen, W. Lai, S. Shaik, ChemPhysChem 2010, 11, 301.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  A. C. Aragonès, N. L. Haworth, N. Darwish, S. Ciampi, N. J. Bloomfield, G. G. Wallace, I. Diez-Perez, M. L. Coote, Nature 2016, 531, 88.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. Klinska, L. M. Smith, G. Gryn’ova, M. G. Banwell, M. L. Coote, Chem. Sci. 2015, 6, 5623.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVyntL7K&md5=045f6ac3d84485a8a89628876df3018eCAS |

[12]  (a) A. A. Zavitsas, C. Chatgilialoglu, J. Am. Chem. Soc. 1995, 117, 10645.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosF2jsb8%3D&md5=196007ecc13972fa351c5c702d02b773CAS |
      (b) W. Lai, C. Li, H. Chen, S. Shaik, Angew. Chem., Int. Ed. 2012, 51, 5556.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  P. Su, L. Song, W. Wu, P. C. Hiberty, S. Shaik, J. Am. Chem. Soc. 2004, 126, 13539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsleis7o%3D&md5=76bdad96d48f55c585153f68c4186a68CAS |

[14]  (a) S. Shaik, W. Wu, K. Dong, L. Song, P. C. Hiberty, J. Phys. Chem. A 2001, 105, 8226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVOlsrk%3D&md5=1d823a098d79110c3293d8ac9fc32d98CAS |
      (b) A. A. Zavitsas, J. Phys. Chem. A 2002, 106, 5041.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Shaik, S. P. de Visser, W. Wu, L. Song, P. C. Hiberty, J. Phys. Chem. A 2002, 106, 5043.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  P. C. Hiberty, C. Megret, L. Song, W. Wu, S. Shaik, J. Am. Chem. Soc. 2006, 128, 2836.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSrsLs%3D&md5=07f97206ff1e718f543edf1082fef4a8CAS |

[16]  The following charges in these transition states are calculated using natural bond orbital analysis at the M06–2X/aug-cc-pVTZ level: H(0.299)–F(–0.598)–H(0.299) and F(–0.242)–H(0.484)–F(–0.242).

[17]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision B.01 2009 (Gaussian, Inc.: Wallingford CT).

[18]  Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock, Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock, Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock, Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock, Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock, Mol. Phys 2015, 113, 184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2ksbnN&md5=2b8f8604dfa216bb4fb4254ba61bea27CAS |

[19]  (a) R. F. W. Bader, A. Streitwieser, A. Neuhaus, K. E. Laidig, P. Speers, J. Am. Chem. Soc. 1996, 118, 4959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivVGjt7s%3D&md5=ef5a3950f0d801863f596e48c280e7f7CAS |
      (b) X. Fradera, M. A. Austen, R. F. W. Bader, J. Phys. Chem. A 1999, 103, 304.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  A. Pross, Theoretical and Physical Principles of Organic Reactivity 1995 (John Wiley & Sons, Inc.: New York, NY).

[21]  S. Shaik, A. Shurki, Angew. Chem., Int. Ed. 1999, 38, 586.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  D. M. Smith, B. T. Golding, L. Radom, J. Am. Chem. Soc. 2001, 123, 1664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosV2ruw%3D%3D&md5=f8ad25da7244476ecf2e1178bda551ecCAS |

[23]  X-ray structure 1DIO in protein data bank, see N. Shibata, J. Masuda, T. Tobimatsu, T. Toraya, K. Suto, Y. Morimoto, N. Yasuoka, Structure 1999, 7, 997.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFCqtb0%3D&md5=b2f83eb5cfc3dd134cdff0228368e916CAS |

[24]  A. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, M. H. M. Olsson, Chem. Rev. 2006, 106, 3210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVSjsLk%3D&md5=28cb56862199ef38aade26b453db8b81CAS |