Syntheses, Structural Studies, and Copper Iodide Complexes of Macrocycles Derived from Williamson Ether Syntheses Involving 2,9-Bis(4-hydroxyphenyl)-1,10-phenanthroline, α,ω-Dibromides, and Resorcinol or 2,7-Dihydroxynaphthalene
Zuzana Baranová A , Hashem Amini A , Madhav Neupane A , Sydney C. Garrett A , Andreas Ehnbom A , Nattamai Bhuvanesh A , Joseph H. Reibenspies A and John A. Gladysz A BA Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77843-3012, USA.
B Corresponding author. Email: gladysz@mail.chem.tamu.edu
Australian Journal of Chemistry 70(4) 373-386 https://doi.org/10.1071/CH16587
Submitted: 14 October 2016 Accepted: 16 November 2016 Published: 23 December 2016
Abstract
1,3-Bis(6-bromohexyloxy)benzene, 2,7-bis(6-bromohexyloxy)naphthalene, 1,3-bis(4-bromomethylbenzyloxy)benzene, and 1,3-bis(3-bromomethylbenzyloxy)benzene were prepared via Williamson ether synthesis using resorcinol or 2,7-dihydroxynaphthalene and 1,6-dibromohexane, 1,4-bis(bromomethyl)benzene, or 1,3-bis(bromomethyl)benzene (21–47 % yield). These dibromides were condensed with 2,9-bis(4-hydroxyphenyl)-1,10-phenanthroline in the presence of K2CO3 to give the corresponding 31- to 35-membered macrocycles (3a–d, 22–63 % yield). When 3a–d were treated with CuI, mononuclear 1 : 1 complexes formed, in which the CuI chelates to the nitrogen donor atoms of the phenanthroline moiety (4a–d, 40–80 % yield). The crystal structures of 3a–c and 4a–c were determined and analyzed using density functional theory calculations and in the context of rotaxanes that could be formed by treatment of 4a–d with terminal alkynes (e.g. macrocycle dimensions, void volumes). The copper and iodide atoms in 4a–c significantly protrude from the least-squares plane of the phenanthroline moiety (0.46–0.63 Å and 1.65–2.07 Å).
References
[1] C. J. Bruns, J. F. Stoddart, The Nature of the Mechanical Bond: From Molecules to Machines 2017 (John Wiley & Sons, Inc.: Hoboken, NJ).[2] (a) J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives 1995 (VCH: Weinheim, Germany).
(b) J.-P. Sauvage, C. Dietrich-Buchecker (Eds), Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology 1999 (Wiley-VCH: Weinheim, Germany).
[3] (a) T. J. Hubin, D. H. Busch, Coord. Chem. Rev. 2000, 200–202, 5.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. S. Forgan, J.-P. Sauvage, J. F. Stoddart, Chem. Rev. 2011, 111, 5434.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. F. Lindoy, K.-M. Park, S. S. Lee, Chem. Soc. Rev. 2013, 42, 1713.
| Crossref | GoogleScholarGoogle Scholar |
(d) N. H. Evans, P. D. Beer, Chem. Soc. Rev. 2014, 43, 4658.
| Crossref | GoogleScholarGoogle Scholar |
(e) G. Gil-Ramírez, D. A. Leigh, A. J. Stephens, Angew. Chem., Int. Ed. 2015, 54, 6110. [Angew. Chem. 2015, 127, 6208 https://doi.org/10.1002/ange.201411619]
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) M. Pérez-Alvarez, F. M. Raymo, S. J. Rowan, D. Schiraldi, J. F. Stoddart, Z.-H. Wang, A. J. P. White, D. J. Williams, Tetrahedron 2001, 57, 3799.
| Crossref | GoogleScholarGoogle Scholar |
(b) D. A. Leigh, A. Venturini, A. J. Wilson, J. K. Y. Wong, F. Zerbetto, Chem. – Eur. J. 2004, 10, 4960.
| Crossref | GoogleScholarGoogle Scholar |
(c) O. Š. Miljanić, W. R. Dichtel, S. I. Khan, S. Mortezaei, J. R. Heath, J. F. Stoddart, J. Am. Chem. Soc. 2007, 129, 8236.
| Crossref | GoogleScholarGoogle Scholar |
(d) V. Aucagne, J. Berná, J. D. Crowley, S. M. Goldup, K. D. Hänni, D. A. Leigh, P. J. Lusby, V. E. Ronaldson, A. M. Z. Slawin, A. Viterisi, D. B. Walker, J. Am. Chem. Soc. 2007, 129, 11950.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. Berná, J. D. Crowley, S. M. Goldup, K. D. Hänni, A.-L. Lee, D. A. Leigh, Angew. Chem., Int. Ed. 2007, 46, 5709. [Angew. Chem. 2007, 119, 5811 https://doi.org/10.1002/ange.200701678]
| Crossref | GoogleScholarGoogle Scholar |
(f) C. D. Meyer, R. S. Forgan, K. S. Chichak, A. J. Peters, N. Tangchaivang, G. W. V. Cave, S. I. Khan, S. J. Cantrill, J. F. Stoddart, Chem. – Eur. J. 2010, 16, 12570.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. D. Crowley, K. D. Hänni, D. A. Leigh, A. M. Z. Slawin, J. Am. Chem. Soc. 2010, 132, 5309.
| Crossref | GoogleScholarGoogle Scholar |
(h) G. T. Spence, N. G. White, P. D. Beer, Org. Biomol. Chem. 2012, 10, 7282.
| Crossref | GoogleScholarGoogle Scholar |
(i) H. Iwamoto, W. Takizawa, K. Itoh, T. Hagiwara, E. Tayama, E. Hasegawa, T. Haino, J. Org. Chem. 2013, 78, 5205.
| Crossref | GoogleScholarGoogle Scholar |
(j) J.-F. Ayme, J. E. Beves, C. J. Campbell, D. A. Leigh, Chem. Soc. Rev. 2013, 42, 1700.
| Crossref | GoogleScholarGoogle Scholar |
(k) M. Frasconi, T. Kikuchi, D. Cao, Y. Wu, W.-G. Liu, S. M. Dyar, G. Barin, A. A. Sarjeant, C. L. Stern, R. Carmieli, C. Wang, M. R. Wasielewski, W. A. Goddard, J. F. Stoddart, J. Am. Chem. Soc. 2014, 136, 11011.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) N. Weisbach, Z. Baranová, S. Gauthier, J. H. Reibenspies, J. A. Gladysz, Chem. Commun. 2012, 48, 7562.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Olsbs%3D&md5=d207b562534bad0efb2da7832d0567f3CAS |
(b) Z. Baranová, H. Amini, N. Bhuvanesh, J. A. Gladysz, Organometallics 2014, 33, 6746.
| Crossref | GoogleScholarGoogle Scholar |
[6] Computational study: H. Sahnoune, Z. Baranová, N. Bhuvanesh, J. A. Gladysz, J.-F. Halet, Organometallics 2013, 32, 6360.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1KktbvJ&md5=9f253d302992e4411a067f01d8f89c1cCAS |
[7] (a) W. Mohr, J. Stahl, F. Hampel, J. A. Gladysz, Chem. – Eur. J. 2003, 9, 3324.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVehs7k%3D&md5=5decd4d090adc501f9b2a82584aeba2eCAS |
(b) Q. Zheng, J. C. Bohling, T. B. Peters, A. C. Frisch, F. Hampel, J. A. Gladysz, Chem. – Eur. J. 2006, 12, 6486.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Stahl, W. Mohr, L. de Quadras, T. B. Peters, J. C. Bohling, J. M. Martín-Alvarez, G. R. Owen, F. Hampel, J. A. Gladysz, J. Am. Chem. Soc. 2007, 129, 8282.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. de Quadras, E. B. Bauer, W. Mohr, J. C. Bohling, T. B. Peters, J. M. Martín-Alvarez, F. Hampel, J. A. Gladysz, J. Am. Chem. Soc. 2007, 129, 8296.
| Crossref | GoogleScholarGoogle Scholar |
(e) L. de Quadras, E. B. Bauer, J. Stahl, F. Zhuravlev, F. Hampel, J. A. Gladysz, New J. Chem. 2007, 31, 1594.
| Crossref | GoogleScholarGoogle Scholar |
(f) G. R. Owen, J. Stahl, F. Hampel, J. A. Gladysz, Chem. – Eur. J. 2008, 14, 73.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. C. Clough, T. Fiedler, N. Bhuvanesh, J. A. Gladysz, J. Organomet. Chem. 2016, 812, 34.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. S. Hay, J. Org. Chem. 1962, 27, 3320.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXivVer&md5=78a0106642640680b728dc8e1abd354aCAS |
[9] (a) C. Dietrich-Buchecker, J.-P. Sauvage, Tetrahedron 1990, 46, 503.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVSltrk%3D&md5=2e59522ce1331cf2bc702a9065be09eaCAS |
(b) J.-C. Chambron, J.-P. Sauvage, K. Mislow, A. De Cian, J. Fischer, Chem. – Eur. J. 2001, 7, 4085.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Joosten, Y. Trolez, J.-P. Collin, V. Heitz, J.-P. Sauvage, J. Am. Chem. Soc. 2012, 134, 1802.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) S. Saito, E. Takahashi, K. Nakazono, Org. Lett. 2006, 8, 5133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVamtLvK&md5=097884a695a122d77cc862c569ff972fCAS |
(b) Y. Sato, R. Yamasaki, S. Saito, Angew. Chem., Int. Ed. 2009, 48, 504. [Angew. Chem. 2009, 121, 512]
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Saito, J. Inclusion Phenom. Macrocyclic Chem. 2015, 82, 437.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Hayashi, Y. Mutoh, T. Kasama, S. Saito, J. Org. Chem. 2015, 80, 7536.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. Hayashi, Y. Slavík, T. Kasama, S. Saito, J. Org. Chem. 2016, 81, 1175.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) L. D. Movsisyan, D. V. Kondratuk, M. Franz, A. L. Thompson, R. R. Tykwinski, H. L. Anderson, Org. Lett. 2012, 14, 3424.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xoslanu7Y%3D&md5=1320225f9a45b9e6ee467f2a39698d9eCAS |
(b) L. D. Movsisyan, M. Franz, F. Hampel, A. L. Thompson, R. R. Tykwinski, J. Am. Chem. Soc. 2016, 138, 1366.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) J. D. Crowley, S. M. Goldup, A. L. Lee, D. A. Leigh, R. T. McBurney, Chem. Soc. Rev. 2009, 38, 1530.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVSmsrY%3D&md5=24141c0a38f477701d3907404a5fc034CAS |
(b) J. E. Beves, B. A. Blight, C. J. Campbell, D. A. Leigh, R. T. McBurney, Angew. Chem., Int. Ed. 2011, 50, 9260. [Angew. Chem. 2011, 123, 9428]
| Crossref | GoogleScholarGoogle Scholar |
(c) J. E. Beves, B. A. Blight, C. J. Campbell, D. A. Leigh, R. T. McBurney, Angew. Chem. 2011, 123, 9428.
| Crossref | GoogleScholarGoogle Scholar |
(d) V. Aucagne, K. D. Hänni, D. A. Leigh, P. J. Lusby, D. B. Walker, J. Am. Chem. Soc. 2006, 128, 2186.
| Crossref | GoogleScholarGoogle Scholar |
[13] Z. Baranová, Studies of Rotaxanes Consisting of 1,10-Phenanthroline Based Macrocycles and Platinum-Capped Polyynediyl Complexes: A Steric and a Dynamic Approach to Molecular Insulation 2017, Ph.D. thesis, Texas A&M University, College Station, Texas, USA.
[14] S. Saito, K. Nakazono, E. Takahashi, J. Org. Chem. 2006, 71, 7477.(see also the supporting information therein).
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVCitbY%3D&md5=0f615dc1579cf3c1d30984a5744d3dbfCAS |
[15] (a) C. O. Dietrich-Buchecker, J. P. Sauvage, Tetrahedron Lett. 1983, 24, 5091.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtlyqu74%3D&md5=a6aa48954080d96320782840e6a5b107CAS |
(b) C. O. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem. Soc. 1984, 106, 3043.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) T. Ogawa, T. Kishimoto, K. Kobayashi, N. Ono, J. Chem. Soc., Perkin Trans. 1 1998, 529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFGhuw%3D%3D&md5=119fe3050f53c0d51801519cae9e1448CAS |
(b) N. Watarai, H. Kawasaki, I. Azumaya, R. Yamasaki, S. Saito, Heterocycles 2009, 79, 531.
| Crossref | GoogleScholarGoogle Scholar |
[17] A reviewer has questioned why the yield of 4c is only 40 %, relative to the higher yield (80 %) obtained for the other CuI complexes. It is thought that the crystallization of this complex is not as efficient, as the mother liquor remains pale orange.
[18] The atom labels for 3a (Fig. 2) correspond to those in the cif file for the crystal structure of 3a. In the text, the atoms of 3b, c, and 4a–c have been renumbered to match (Figs. 2 and 3 and Table 2). It should be kept in mind that due to the mirror plane in 3c, there are fewer unique carbon, nitrogen, and oxygen atoms. Thus, atoms that are equivalent by symmetry bear different numbers. The crystal structure of 3a has also been reported in an earlier paper, see ref. [6]
[19] (a) P. C. Healy, J. Chem. Soc., Dalton Trans. 1985, 2531.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xhsl2jsrw%3D&md5=412285878769845cd3d5a0b59734e429CAS |
(b) X.-P. Zhou, D. Li, S. W. Ng, Acta Crystallogr. 2005, E61, m654.
[20] Y. Yang, W. Chai, L. Song, K. Shu, Acta Crystallogr. 2010, E66, m1486.
[21] J. Nitsch, C. Kleeberg, R. Fröhlich, A. Steffen, Dalton Trans. 2015, 44, 6944.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksFWmtbk%3D&md5=4e146a9b72e2166c3af2a56198491b35CAS |
[22] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Crystallogr. 2008, 41, 466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Gmtb0%3D&md5=25c5f4b24ba2ca3798a27faf06807d39CAS |
[23] The exact comparisons are as follows: 3a, N1C29 10.886 Å and N2C25 11.054 Å; 3b, N1C301 12.696 Å and N2C303 12.696 Å; 3c, N1C29 9.519 Å and N1C28 8.487 Å; 4a, N1C29 11.618 Å and N2C25 11.751 Å; 4b, N1C301 11.955 Å and N2C303 12.119 Å; 4c, N1C29 11.953 Å and N2C25 11.451 Å.
[24] M. Loos, C. Gerber, F. Corona, J. Hollender, H. Singer, Anal. Chem. 2015, 87, 5738. [enviPat Web 2.1. Available at http://www.envipat.eawag.ch/index.php (accessed 25 November 2016)].
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnsVeit70%3D&md5=384dd476752552857550a347d0b89b3fCAS |
[25] Each m/z value corresponds to the most intense peak of the isotope envelope, and the assignments have been verified by simulations.
[26] These 1H NMR assignments are based on those given in reference [9a]. For the numbering or labelling of certain atoms, see Fig. S1.
[27] Traces of H2O are apparent in the 1H NMR spectrum.
[28] The 13C NMR signals were assigned based on data obtained for a similar macrocycle, see ref. [10a]. The solubility of this compound was very low in most NMR solvents (CD2Cl2, CDCl3, C6D6, [D8]toluene, CD3CN) at room temperature, and three signals could not be observed, even in spectra recorded using a cryoprobe.
[29] This compound is not sufficiently soluble for 1H and 13C NMR spectra. However, the crystal (Fig. 3c) is a CH2Cl2 monosolvate, and the microanalysis better fits this formula.
[30] This compound is not sufficiently soluble for 1H and 13C NMR spectroscopy analysis that would evaluate the solvation model that fits the data.
[31] G. M. Sheldrick, Cell_Now (version 2008/1): Program for Obtaining Unit Cell Constants from Single Crystal Data 2008 (University of Göttingen: Germany).
[32] APEX2, Program for Data Collection on Area Detectors 2008 (BRUKER AXS Inc.: Madison, WI).
[33] G. M. Sheldrick, Program for Absorption Correction of Area Detector Frames 2012 (BRUKER AXS Inc.: Madison, WI).
[34] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[35] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlChtw%3D%3D&md5=fef1b94db322ce3c12ee7ccdd0c49499CAS |
[36] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01 2009 (Gaussian, Inc.: Wallingford CT).
[37] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=f3f6bac3f3f06397785c39408dfcd392CAS |
(b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar |
[38] D. L. Lichtenberger, J. A. Gladysz, Organometallics 2014, 33, 835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Oksbo%3D&md5=aa31940c995f61e0129b8ba54eae2801CAS |