The Variediene-Forming Carbocation Cyclization/Rearrangement Cascade
Young J. Hong A and Dean J. Tantillo A B
+ Author Affiliations
- Author Affiliations
A Department of Chemistry, University of California–Davis, Davis, CA 95616, USA.
B Corresponding author. Email: djtantillo@ucdavis.edu
Australian Journal of Chemistry 70(4) 362-366 https://doi.org/10.1071/CH16504
Submitted: 9 September 2016 Accepted: 13 October 2016 Published: 31 October 2016
Abstract
An energetically viable (on the basis of results from density functional theory computations) pathway to the diterpene variediene is described. Only one of the three secondary carbocations along this pathway is predicted to be a minimum on the potential energy surface.
References
[1] B. Qin, Y. Matsuda, T. Mori, M. Okada, Z. Quan, T. Mitsuhashi, T. Wakimoto, I. Abe, Angew. Chem. Int. Ed. 2016, 55, 1658.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslygsLnO&md5=e9e20a10c94fda3771fc2050bdbed6d2CAS |
[2] D. J. Tantillo, Chem. Soc. Rev. 2010, 39, 2847.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFygsro%3D&md5=0090d4391694ada05758bbaba22fddcfCAS | 20442917PubMed |
[3] (a) D. J. Tantillo, Nat. Prod. Rep. 2011, 28, 1035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFGgsrk%3D&md5=20b368cbbdf618457d4f42e84a28ef1eCAS | 21541432PubMed |
(b) Y. J. Hong, D. J. Tantillo, Nat. Chem. 2014, 6, 104.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. J. Hong, D. J. Tantillo, Chem. Sci. 2013, 4, 2512.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSIAN09, Revision D.01 2013 (Gaussian, Inc.: Wallingford, CT).
[5] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlagt7o%3D&md5=e85fe60f193d14713ecc5526db7864c2CAS |
(b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory Comput. 2008, 4, 297.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktl2rt78%3D&md5=a3bd1120a7e50e4e25d0dc524b198b08CAS |
(b) K. Fukui, Acc. Chem. Res. 1981, 14, 363.
| Crossref | GoogleScholarGoogle Scholar |
[7] S. P. T. Matsuda, W. K. Wilson, Q. Xiong, Org. Biomol. Chem. 2006, 4, 530.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos1yqsQ%3D%3D&md5=6a69ea7bf5b7ee5b7992193bbfd1b486CAS |
[8] N. Muller, A. Falk, Ball & Stick 4.0a12: Molecular Graphics Software for MacOS 2004 (Johannes Kepler University: Linz).
[9] This is part 13 of our series on theoretical studies of diterpene-forming carbocation rearrangements. For part 12, see: K. C. Potter, M. Jia, Y. J. Hong, D. J. Tantillo, R. J. Peters, Org. Lett. 2016, 18, 1060.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XisVKisrs%3D&md5=cccd1d845415b2aafc492c5f99e42860CAS | 26878189PubMed |
[10] Y. J. Hong, D. J. Tantillo, J. Am. Chem. Soc. 2009, 131, 7999.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVegu78%3D&md5=06e0842a7c2bcc873bff0d7c033abde1CAS | 19469543PubMed |
[11] (a) L. Zu, M. Xu, M. W. Lodewyk, D. E. Cane, R. J. Peters, D. J. Tantillo, J. Am. Chem. Soc. 2012, 134, 11369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt1Cisbc%3D&md5=7bdbb175862141dacd941186d27bfb07CAS | 22738258PubMed |
(b) P. Gutta, D. J. Tantillo, J. Am. Chem. Soc. 2006, 128, 6172.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. W. Lodewyk, D. Willenbring, D. J. Tantillo, Org. Biomol. Chem. 2014, 12, 887.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) D. J. Tantillo, J. Phys. Org. Chem. 2008, 21, 561.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1egtLo%3D&md5=e52c971b9b00cff6e2336f04c028450eCAS |
(b) A. Williams, Concerted Organic and Bioorganic Mechanisms 2000 (CRC Press: Boca Raton, FL).
(c) B. A. Hess, J. Am. Chem. Soc. 2002, 124, 10286.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. R. Hare, D. J. Tantillo, Beilstein J. Org. Chem. 2016, 12, 377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtV2jsr7O&md5=d8279117da899fde131c81bf7884e72bCAS | 27340434PubMed |
[14] Y. J. Hong, D. J. Tantillo, J. Am. Chem. Soc. 2015, 137, 4134.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktlertbo%3D&md5=f9fcee55c903a585fb39111db8b6fee9CAS | 25764274PubMed |
[15] (a) Y. J. Hong, D. J. Tantillo, J. Am. Chem. Soc. 2011, 133, 18249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12ksbnJ&md5=bd9c366474db40527b5e3119aa1fc7e5CAS | 21988104PubMed |
(b) P. Gutta, D. J. Tantillo, Org. Lett. 2007, 9, 1069.
| Crossref | GoogleScholarGoogle Scholar |