Weak Intermolecular Forces, but High Melting Points*
Jiabin Gao A , Djamal Djaidi A , Christopher E. Marjo B , Mohan M. Bhadbhade B , Alison T. Ung C and Roger Bishop A DA School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.
B Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia.
C School of Mathematical and Physical Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
D Corresponding author. Email: r.bishop@unsw.edu.au
Australian Journal of Chemistry 70(5) 538-545 https://doi.org/10.1071/CH16565
Submitted: 5 October 2016 Accepted: 6 December 2016 Published: 9 January 2017
Abstract
The poorly soluble racemic compound 6,6a,13,13a-tetrahydropentaleno[1,2-b:4,5-b′]diquinoline (4) has an exceptionally high melting point range of 352–354°C despite its low molar mass (308.38) and a structure containing only 40 atoms (38 of which are C and H). Analysis of the X-ray crystal structure and Hirshfeld surface of 4, along with comparison with its isostructural homologue 2, reveals how this occurs in the absence of Pauling-type hydrogen bonding. Excellent complementarity between homochiral molecules of 4 allows formation of enantiomerically pure layers using C–H⋯π, aromatic π⋯π, and C–H⋯N interactions. The alternating layers of opposite handedness are then crosslinked by means of aza-1,3-peri hydrogen interactions. This bifurcated C–H⋯N⋯H–C motif acts as a molecular clip creating a highly rigid network structure. The role of weaker intermolecular forces in influencing the solubility and bioavailability of potential drug molecules is discussed in the context of the popular Lipinski ‘rule of 5’ guidelines.
References
[1] G. R. Desiraju, J. J. Vittal, A. Ramanan, Crystal Engineering – A Textbook 2011 (World Scientific: Singapore).[2] R. Bishop, Crystal Engineering, Kirk-Othmer Encyclopedia of Chemical Technology 2014, pp. 1–31 (John Wiley & Sons: Hoboken, NJ).
[3] F. H. Herbstein, Crystalline Molecular Complexes and Compounds – Structures and Principles, 2005 (Oxford University Press: Oxford).
[4] R. Bishop, in Supramolecular Chemistry – From Molecules to Nanomaterials (Eds P. A. Gale, J. W. Steed) 2012, pp. 3033–3056 (John Wiley & Sons: Chichester).
[5] G. A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures 1991 (Springer-Verlag: Berlin).
[6] T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFWguw%3D%3D&md5=825b65cd47e4e7475ecea9ff3b2432dcCAS |
[7] G. R. Desiraju, Angew. Chem. Int. Ed. Engl. 1995, 34, 2311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsFOitbw%3D&md5=9c6053e66f4bc20d62b9a89eb401b42cCAS |
[8] R. Bishop, J. Gao, D. Djaidi, M. M. Bhadbhade, in Transactions of the American Crystallographic Association 2012, Vol. 43, pp. 34–44 (American Crystallographic Association: Buffalo, NY). Available at: http://www.amercrystalassn.org/content/pages/main-transactions
[9] R. Bishop, Aust. J. Chem. 2012, 65, 1361.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFersL%2FK&md5=ed1dec32a4d3d903174b0680eb757846CAS |
[10] R. Bishop, CrystEngComm 2015, 17, 7448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlGrsr3E&md5=413572c360714d0ab81ba13b038d13d4CAS |
[11] R. Bishop, Top. Heterocycl. Chem. 2009, 18, 75.
| Crossref | GoogleScholarGoogle Scholar |
[12] C. E. Marjo, M. L. Scudder, D. C. Craig, R. Bishop, J. Chem. Soc., Perkin Trans. 2 1997, 2099.(1 CCDC no. 1221991, NOKFIC).
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFOgu7w%3D&md5=4ddd9271bedb4ef279aea9634028df3cCAS |
[13] S. F. Alshahateet, R. Bishop, D. C. Craig, M. L. Scudder, Cryst. Growth Des. 2004, 4, 837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1Gis7g%3D&md5=b6cfc1bc7a76f9b6e7de6076512e2353CAS |
[14] A. N. M. M. Rahman, R. Bishop, D. C. Craig, M. L. Scudder, Eur. J. Org. Chem. 2003, 72.(3 CCDC no. 189724, MUSDEJ)
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvVOhuw%3D%3D&md5=beeffcb7c4c6d21c7313c0a06ab3a196CAS |
[15] S. F. Alshahateet, M. M. Bhadbhade, R. Bishop, D. C. Craig, M. L. Scudder, CrystEngComm 2015, 17, 9111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslKgtbnL&md5=ee7707ab8eb4070778fac1af0237f2acCAS |
[16] C.-C. Cheng, S.-J. Yan, Org. React. 1982, 28, 37.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlvVais74%3D&md5=605266c82572284f34ae351720c92722CAS |
[17] R. P. Thummel, Synlett 1992, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht1yksrs%3D&md5=acff4952de241192168bca0b7b53b69fCAS |
[18] S. H. Bertz, J. M. Cook, A. Gawish, U. Weiss, Org. Synth. 1990, VII, 50.Coll. Vol.
| Crossref | GoogleScholarGoogle Scholar |
[19] C. L. Diedrich, D. Haase, W. Saak, J. Christoffers, Eur. J. Org. Chem. 2008, 1811.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFSksr0%3D&md5=e187c76f97d966da75d119f76436cae3CAS |
[20] G. Mehta, C. Prabhakar, N. Padmaja, M. A. Viswamitra, J. Chem. Soc., Perkin Trans. 1 1992, 1747.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtFaksbg%3D&md5=b76d0eda8953bf0b8f862c4df51e330cCAS |
[21] M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCksg%3D%3D&md5=83196510543882089cd064d14952b1a7CAS |
[22] S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, Crystal Explorer 3.1 2012 (University of Western Australia: Perth).
[23] S. F. Alshahateet, R. Bishop, D. C. Craig, M. L. Scudder, CrystEngComm 2001, 3, 265.
| Crossref | GoogleScholarGoogle Scholar |
[24] S. F. Alshahateet, R. Bishop, D. C. Craig, M. L. Scudder, CrystEngComm 2001, 3, 107.
| Crossref | GoogleScholarGoogle Scholar |
[25] G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology 1999 (Oxford Science Publications: Oxford).
[26] I. Dance, New J. Chem. 2003, 27, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1entQ%3D%3D&md5=f733f3dea29aa104ffe6b38a90b5b6d7CAS |
[27] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision E.01 2009 (Gaussian, Inc.: Wallingford, CT).
[28] I. Moriguchi, S. Hirono, Q. Liu, I. Nakagome, Y. Matsushita, Chem. Pharm. Bull. 1992, 40, 127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVOnu7c%3D&md5=0cb0c6c54a6a3ad9454aaf10fb03e902CAS |
[29] Wavefunction Inc., Spartan 10 2010 (Wavefunction Inc.: Irvine, CA).
[30] A. M. Liquori, E. Giglio, L. Mazzarella, Nuovo Cim., B 1968, 55, 476.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXkt1ajtr4%3D&md5=005a5f4ccabbb031b990114427cf3039CAS |
[31] P. A. Reynolds, Acta Crystallogr. Sect. A 1978, 34, 242.
| Crossref | GoogleScholarGoogle Scholar |
[32] P. Vishweshwar, J. A. McMahon, M. J. Zaworotko, in Frontiers in Crystal Engineering (Eds E. R. T. Tiekink, J. J. Vittal) 2006, Ch. 2, pp. 25–49 (John Wiley and Sons: Chichester).
[33] F. Lara-Ochoa, G. Espinosa-Pérez, Supramol. Chem. 2007, 19, 553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVansb3N&md5=68cde3060e1bd6ee81e4a4536924ead3CAS |
[34] N. Shan, M. J. Zaworotko, Drug Discov. Today 2008, 13, 440.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVWntLY%3D&md5=da8a4f9097e85a79d78307118d35aa7eCAS |
[35] T. Friscic, W. Jones, Cryst. Growth Des. 2009, 9, 1621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCku7g%3D&md5=c164d891245e262b9e8a24ceca5a90f6CAS |
[36] K. M. Anderson, M. R. Probert, C. N. Whiteley, A. M. Rowland, A. E. Goeta, J. W. Steed, Cryst. Growth Des. 2009, 9, 1082.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFChsbzP&md5=e0141c6e920d30b2c3737502779ee397CAS |
[37] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeny, Adv. Drug Deliv. Rev. 1997, 23, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlKlsQ%3D%3D&md5=68dfac5200317b1498cecafe26086950CAS |
[38] C. Hansch, T. Fujita, J. Am. Chem. Soc. 1964, 86, 1616.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXptF2gsQ%3D%3D&md5=04ee34f4ce09af9498a0c71bee87f201CAS |
[39] H. van de Waterbeemd, D. A. Smith, B. C. Jones, J. Comput. Aided Mol. Des. 2001, 15, 273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlWjtLo%3D&md5=1dffba5d4322ac3674c2db4eadef86a4CAS |
[40] E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, D. J. Nesbitt, Pure Appl. Chem. 2011, 83, 1637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Orsb7F&md5=e58d350c4b86a00f3b1097da272820dbCAS |
[41] W. Kabsch, J. Appl. Cryst. 1993, 26, 795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptFeltw%3D%3D&md5=41fdf6dde8b26cd71d73ba3ebf3584cdCAS |
[42] G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=933d4ded754510f3d6dd59e45c48aab3CAS |
[43] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFSnsbg%3D&md5=152b232aadeaa73225d2029119611dc4CAS |