In Situ Spectroelectrochemical Investigations of RuII Complexes with Bispyrazolyl Methane Triarylamine Ligands
Carol Hua A , Brendan F. Abrahams B , Floriana Tuna C , David Collison C and Deanna M. D’Alessandro A DA School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
B School of Chemistry, The University of Melbourne, Melbourne, Vic. 3010, Australia.
C School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
D Corresponding author. Email: deanna.dalessandro@sydney.edu.au
Australian Journal of Chemistry 70(5) 546-555 https://doi.org/10.1071/CH16555
Submitted: 30 September 2016 Accepted: 15 December 2016 Published: 1 February 2017
Abstract
The synthesis and characterization of two triarylamine ligands, 4-(di(1H-pyrazol-1-yl)methyl)-N-(4-(di(1H-pyrazol-1-yl)methyl)phenyl)-N-phenylaniline (TPA-2bpm) and tris(4-(di(1H-pyrazol-1-yl)methyl)phenyl)amine (TPA-3bpm), containing the bispyrazolylmethane moiety and its RuII terpyridine complexes are presented. The redox properties of the ligands and RuII complexes are explored in detail through cyclic and square-wave voltammetry in addition to in situ UV-vis-near infrared, electron paramagnetic resonance, and fluorescence spectroelectrochemistry. It was demonstrated that the triarylamine radical cation was able to be generated, and further, TPA-2bpm underwent an electrochemically induced dimerization process.
References
[1] J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton, T. J. Meyer, Acc. Chem. Res. 2009, 42, 1954.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Cju7%2FE&md5=88cedf1b1797b22d09776068391f3fe4CAS |
[2] P. R. Andres, U. S. Schubert, Adv. Mater. 2004, 16, 1043.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlKltro%3D&md5=a0c84652db144e6f1e74f3e8bf9a1d3dCAS |
[3] A. O. Adeloye, P. A. Ajibade, Molecules 2014, 19, 12421.
[4] L. Hammarstroem, O. Johansson, Coord. Chem. Rev. 2010, 254, 2546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWgsrvN&md5=530f2761ec8db407efef8fa6d0e2e93cCAS |
[5] R. Sakamoto, S. Katagiri, H. Maeda, H. Nishihara, Coord. Chem. Rev. 2013, 257, 1493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVGhs7rL&md5=338220adaee2ce928c1ca8c62f385bd5CAS |
[6] R. Shunmugam, G. J. Gabriel, K. A. Aamer, G. N. Tew, Macromol. Rapid Commun. 2010, 31, 784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVOisrs%3D&md5=5d2a995b9dab4f93f1cfa02853d38cfbCAS |
[7] A. Winter, S. Hoeppener, G. R. Newkome, U. S. Schubert, Adv. Mater. 2011, 23, 3484.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslCkurY%3D&md5=520c26e6e946984fd60eb3d12aab4678CAS |
[8] A. Wild, A. Winter, F. Schluetter, U. S. Schubert, Chem. Soc. Rev. 2011, 40, 1459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Kitrw%3D&md5=7a94c501d6b4c2dfa5ab0ac95808e6c0CAS |
[9] A. Winter, G. R. Newkome, U. S. Schubert, ChemCatChem 2011, 3, 1384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOmurvN&md5=680eaea70bc616834a7a6275ab6eaaa8CAS |
[10] J. Choi, H. M. Nguyen, S. Yoon, N. Kim, J.-W. Oh, F. S. Kim, Mol. Cryst. Liq. Cryst. 2014, 600, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2msrfN&md5=9a31fc9ab7220148e7efaa4392e92e59CAS |
[11] P. Hrobárik, V. Hrobáriková, I. Sigmundová, P. Zahradník, M. Fakis, I. Polyzos, P. Persephonis, J. Org. Chem. 2011, 76, 8726.
| Crossref | GoogleScholarGoogle Scholar |
[12] C.-J. Yao, Y.-W. Zhong, J. Yao, Inorg. Chem. 2013, 52, 10000.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CltLzO&md5=033560afa6a56a016df2f48f1e97e461CAS |
[13] C. Lambert, G. Nöll, Angew. Chem. Int. Ed. 1998, 37, 2107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls12ksrk%3D&md5=266bfe3708c69ee99f99274ac22c84c3CAS |
[14] C. Lambert, G. Nöll, J. Am. Chem. Soc. 1999, 121, 8434.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1OjsbY%3D&md5=9ff6a459ebff31436ad73371ceac3c6fCAS |
[15] C. Lambert, G. Nöll, Synth. Met. 2003, 139, 57.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1alsrk%3D&md5=5e7b0f94b49158292c7eba51cd192835CAS |
[16] C. Lambert, S. Amthor, J. Schelter, J. Phys. Chem. A 2004, 108, 6474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsF2hsr8%3D&md5=79190e624f97da685218c500f65e25eaCAS |
[17] S. Amthor, C. Lambert, J. Phys. Chem. A 2006, 110, 1177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlagu77J&md5=d50d7a6c378e073ed4e0753ba90f3c0dCAS |
[18] C. Lambert, C. Risko, V. Coropceanu, J. Schelter, S. Amthor, N. E. Gruhn, J. C. Durivage, J.-L. Brédas, J. Am. Chem. Soc. 2005, 127, 8508.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlKjtrw%3D&md5=4d3a9418cdc173cd03ad97a7e344d1d1CAS |
[19] A. Heckmann, C. Lambert, Angew. Chem. Int. Ed. 2012, 51, 326.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyrtbfI&md5=90f29fe3b33830a3f4957d8b5c9c0528CAS |
[20] M. Parthey, M. Kaupp, Chem. Soc. Rev. 2014, 43, 5067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtValsrfK&md5=550d68074cff1dbb64210342324fe6edCAS |
[21] D. M. D’Alessandro, F. R. Keene, Chem. Soc. Rev. 2006, 35, 424.
| 1:CAS:528:DC%2BD28XjslKiurY%3D&md5=0e32716d381658c5c28a12c07da4d295CAS |
[22] D. M. D’Alessandro, F. R. Keene, Chem. Rev. 2006, 106, 2270.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVehtLY%3D&md5=387000c6a6a99f7e465db9fe7d5bce0bCAS |
[23] P. J. Low, Dalton Trans. 2005, 2821.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlSis74%3D&md5=b2d66eed0542ca920edcac3ed580cdeeCAS |
[24] C. A. Bignozzi, R. Argazzi, R. Boaretto, E. Busatto, S. Carli, F. Ronconi, S. Caramori, Coord. Chem. Rev. 2013, 257, 1472.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSlt7%2FO&md5=d1a19e29b70e5ee08726229f500d1bb1CAS |
[25] A. Orbelli Biroli, F. Tessore, M. Pizzotti, C. Biaggi, R. Ugo, S. Caramori, A. Aliprandi, C. A. Bignozzi, F. De Angelis, G. Giorgi, E. Licandro, E. Longhi, J. Phys. Chem. C 2011, 115, 23170.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSlu7%2FF&md5=bc45c5e800ffadd8d14eb2841d110e47CAS |
[26] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 2011, 334, 629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqu7nI&md5=df16fe5e6ab5d0b98fdebc20483e71fbCAS |
[27] M. Thelakkat, Macromol. Mater. Eng. 2002, 287, 442.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVSitrk%3D&md5=b70f76590f1e319a3939584e47540384CAS |
[28] T. Lana-Villarreal, J. M. Campiña, N. Guijarro, R. Gómez, Phys. Chem. Chem. Phys. 2011, 13, 4013.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVSlu70%3D&md5=e7aa639aa056b242b7a90d4728d1ea8dCAS |
[29] A. Petr, C. Kvarnström, L. Dunsch, A. Ivaska, Synth. Met. 2000, 108, 245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtlGqug%3D%3D&md5=c8082627fc29caf1557a02e2eaf366cfCAS |
[30] S. Amthor, B. Noller, C. Lambert, Chem. Phys. 2005, 316, 141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVGqtrc%3D&md5=47a94f9a4465e7bc174eb505c1922002CAS |
[31] N. S. Hush, Electrochim. Acta 1968, 13, 1005.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXks1eiurc%3D&md5=b673356f752f725f2873bbc09f7049e1CAS |
[32] G. C. Allen, N. S. Hush, Inorg. Chem. 1967, 6, 4.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXjtlejsQ%3D%3D&md5=e4eb3a5acaa0a546332cfca2830e2ab8CAS |
[33] M. B. Robin, P. Day, in Advances in Inorganic Chemistry and Radiochemistry (Eds H. J. Emeléus, A. G. Sharpe) 1968, Vol. 10, pp. 247–422 (Academic Press: New York, NY).
[34] D. R. Kattnig, B. Mladenova, G. Grampp, C. Kaiser, A. Heckmann, C. Lambert, J. Phys. Chem. C 2009, 113, 2983.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVCgsLc%3D&md5=4ca030a9b84028bc2eb3348d3383e964CAS |
[35] G. Lemercier, A. Bonne, M. Four, L. M. Lawson-Daku, C. R. Chim. 2008, 11, 709.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1yktro%3D&md5=14d6aa1db9935206f5e54952d12d8dbeCAS |
[36] C. Hua, D. M. D’Alessandro, CrystEngComm 2014, 16, 6331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKjs7fK&md5=28bbbce5d1f0aeeb6b03f229f24a596cCAS |
[37] F. J. Rizzuto, T. B. Faust, B. Chan, C. Hua, D. M. D’Alessandro, C. J. Kepert, Chem. – Eur. J. 2014, 20, 17597.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFWjsr3F&md5=5abf7a9da7633b9d4b755d4a41a610faCAS |
[38] Y. Nakano, T. Yagyu, T. Hirayama, A. Ito, K. Tanaka, Polyhedron 2005, 24, 2141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFymsbnP&md5=5d352e80f586fbc3e1f0ab7fd34dfb06CAS |
[39] D. Hvasanov, A. F. Mason, D. C. Goldstein, M. Bhadbhade, P. Thordarson, Org. Biomol. Chem. 2013, 11, 4602.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVWmtbvL&md5=9c74459fcae8ef29bb984068faaa83f9CAS |
[40] B. P. Sullivan, J. M. Calvert, T. J. Meyer, Inorg. Chem. 1980, 19, 1404.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXitVyis7c%3D&md5=d80d8f288ce87faafea3beb6cf4dedcbCAS |
[41] Y. Liu, J.-R. Li, W. M. Verdegaal, T.-F. Liu, H.-C. Zhou, Chem. – Eur. J. 2013, 19, 5637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlantrw%3D&md5=83d03f696556346975654e3a9c022b78CAS |
[42] CrysAlis PRO 2014 (Agilent Technologies Ltd: Yarnton, UK).
[43] L. Farrugia, J. Appl. Cryst. 1999, 32, 837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVSlurk%3D&md5=e0ff15107f5b5db7053aa30bb6753041CAS |
[44] G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, A71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[45] G. M. Sheldrick, SHELXTL Reference Manual: Version 5 1996 (Analytical X-ray Instruments Inc.: Madison, WI).
[46] T. M. McPhillips, S. E. McPhillips, H.-J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=4b06744951e5db9160e97e445120839fCAS |
[47] W. Kabsch, Acta Crystallogr. Sect. D 2010, 66, 125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SisLc%3D&md5=7bae66ce10b6a77cc2684bc15139b7eeCAS |