Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

In Situ Spectroelectrochemical Investigations of RuII Complexes with Bispyrazolyl Methane Triarylamine Ligands

Carol Hua A , Brendan F. Abrahams B , Floriana Tuna C , David Collison C and Deanna M. D’Alessandro A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

B School of Chemistry, The University of Melbourne, Melbourne, Vic. 3010, Australia.

C School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.

D Corresponding author. Email: deanna.dalessandro@sydney.edu.au

Australian Journal of Chemistry 70(5) 546-555 https://doi.org/10.1071/CH16555
Submitted: 30 September 2016  Accepted: 15 December 2016   Published: 1 February 2017

Abstract

The synthesis and characterization of two triarylamine ligands, 4-(di(1H-pyrazol-1-yl)methyl)-N-(4-(di(1H-pyrazol-1-yl)methyl)phenyl)-N-phenylaniline (TPA-2bpm) and tris(4-(di(1H-pyrazol-1-yl)methyl)phenyl)amine (TPA-3bpm), containing the bispyrazolylmethane moiety and its RuII terpyridine complexes are presented. The redox properties of the ligands and RuII complexes are explored in detail through cyclic and square-wave voltammetry in addition to in situ UV-vis-near infrared, electron paramagnetic resonance, and fluorescence spectroelectrochemistry. It was demonstrated that the triarylamine radical cation was able to be generated, and further, TPA-2bpm underwent an electrochemically induced dimerization process.


References

[1]  J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton, T. J. Meyer, Acc. Chem. Res. 2009, 42, 1954.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Cju7%2FE&md5=88cedf1b1797b22d09776068391f3fe4CAS |

[2]  P. R. Andres, U. S. Schubert, Adv. Mater. 2004, 16, 1043.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlKltro%3D&md5=a0c84652db144e6f1e74f3e8bf9a1d3dCAS |

[3]  A. O. Adeloye, P. A. Ajibade, Molecules 2014, 19, 12421.

[4]  L. Hammarstroem, O. Johansson, Coord. Chem. Rev. 2010, 254, 2546.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWgsrvN&md5=530f2761ec8db407efef8fa6d0e2e93cCAS |

[5]  R. Sakamoto, S. Katagiri, H. Maeda, H. Nishihara, Coord. Chem. Rev. 2013, 257, 1493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVGhs7rL&md5=338220adaee2ce928c1ca8c62f385bd5CAS |

[6]  R. Shunmugam, G. J. Gabriel, K. A. Aamer, G. N. Tew, Macromol. Rapid Commun. 2010, 31, 784.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVOisrs%3D&md5=5d2a995b9dab4f93f1cfa02853d38cfbCAS |

[7]  A. Winter, S. Hoeppener, G. R. Newkome, U. S. Schubert, Adv. Mater. 2011, 23, 3484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslCkurY%3D&md5=520c26e6e946984fd60eb3d12aab4678CAS |

[8]  A. Wild, A. Winter, F. Schluetter, U. S. Schubert, Chem. Soc. Rev. 2011, 40, 1459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Kitrw%3D&md5=7a94c501d6b4c2dfa5ab0ac95808e6c0CAS |

[9]  A. Winter, G. R. Newkome, U. S. Schubert, ChemCatChem 2011, 3, 1384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOmurvN&md5=680eaea70bc616834a7a6275ab6eaaa8CAS |

[10]  J. Choi, H. M. Nguyen, S. Yoon, N. Kim, J.-W. Oh, F. S. Kim, Mol. Cryst. Liq. Cryst. 2014, 600, 22.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2msrfN&md5=9a31fc9ab7220148e7efaa4392e92e59CAS |

[11]  P. Hrobárik, V. Hrobáriková, I. Sigmundová, P. Zahradník, M. Fakis, I. Polyzos, P. Persephonis, J. Org. Chem. 2011, 76, 8726.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  C.-J. Yao, Y.-W. Zhong, J. Yao, Inorg. Chem. 2013, 52, 10000.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CltLzO&md5=033560afa6a56a016df2f48f1e97e461CAS |

[13]  C. Lambert, G. Nöll, Angew. Chem. Int. Ed. 1998, 37, 2107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls12ksrk%3D&md5=266bfe3708c69ee99f99274ac22c84c3CAS |

[14]  C. Lambert, G. Nöll, J. Am. Chem. Soc. 1999, 121, 8434.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1OjsbY%3D&md5=9ff6a459ebff31436ad73371ceac3c6fCAS |

[15]  C. Lambert, G. Nöll, Synth. Met. 2003, 139, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1alsrk%3D&md5=5e7b0f94b49158292c7eba51cd192835CAS |

[16]  C. Lambert, S. Amthor, J. Schelter, J. Phys. Chem. A 2004, 108, 6474.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsF2hsr8%3D&md5=79190e624f97da685218c500f65e25eaCAS |

[17]  S. Amthor, C. Lambert, J. Phys. Chem. A 2006, 110, 1177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlagu77J&md5=d50d7a6c378e073ed4e0753ba90f3c0dCAS |

[18]  C. Lambert, C. Risko, V. Coropceanu, J. Schelter, S. Amthor, N. E. Gruhn, J. C. Durivage, J.-L. Brédas, J. Am. Chem. Soc. 2005, 127, 8508.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlKjtrw%3D&md5=4d3a9418cdc173cd03ad97a7e344d1d1CAS |

[19]  A. Heckmann, C. Lambert, Angew. Chem. Int. Ed. 2012, 51, 326.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyrtbfI&md5=90f29fe3b33830a3f4957d8b5c9c0528CAS |

[20]  M. Parthey, M. Kaupp, Chem. Soc. Rev. 2014, 43, 5067.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtValsrfK&md5=550d68074cff1dbb64210342324fe6edCAS |

[21]  D. M. D’Alessandro, F. R. Keene, Chem. Soc. Rev. 2006, 35, 424.
         | 1:CAS:528:DC%2BD28XjslKiurY%3D&md5=0e32716d381658c5c28a12c07da4d295CAS |

[22]  D. M. D’Alessandro, F. R. Keene, Chem. Rev. 2006, 106, 2270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVehtLY%3D&md5=387000c6a6a99f7e465db9fe7d5bce0bCAS |

[23]  P. J. Low, Dalton Trans. 2005, 2821.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlSis74%3D&md5=b2d66eed0542ca920edcac3ed580cdeeCAS |

[24]  C. A. Bignozzi, R. Argazzi, R. Boaretto, E. Busatto, S. Carli, F. Ronconi, S. Caramori, Coord. Chem. Rev. 2013, 257, 1472.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSlt7%2FO&md5=d1a19e29b70e5ee08726229f500d1bb1CAS |

[25]  A. Orbelli Biroli, F. Tessore, M. Pizzotti, C. Biaggi, R. Ugo, S. Caramori, A. Aliprandi, C. A. Bignozzi, F. De Angelis, G. Giorgi, E. Licandro, E. Longhi, J. Phys. Chem. C 2011, 115, 23170.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSlu7%2FF&md5=bc45c5e800ffadd8d14eb2841d110e47CAS |

[26]  A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 2011, 334, 629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqu7nI&md5=df16fe5e6ab5d0b98fdebc20483e71fbCAS |

[27]  M. Thelakkat, Macromol. Mater. Eng. 2002, 287, 442.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVSitrk%3D&md5=b70f76590f1e319a3939584e47540384CAS |

[28]  T. Lana-Villarreal, J. M. Campiña, N. Guijarro, R. Gómez, Phys. Chem. Chem. Phys. 2011, 13, 4013.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVSlu70%3D&md5=e7aa639aa056b242b7a90d4728d1ea8dCAS |

[29]  A. Petr, C. Kvarnström, L. Dunsch, A. Ivaska, Synth. Met. 2000, 108, 245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtlGqug%3D%3D&md5=c8082627fc29caf1557a02e2eaf366cfCAS |

[30]  S. Amthor, B. Noller, C. Lambert, Chem. Phys. 2005, 316, 141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVGqtrc%3D&md5=47a94f9a4465e7bc174eb505c1922002CAS |

[31]  N. S. Hush, Electrochim. Acta 1968, 13, 1005.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXks1eiurc%3D&md5=b673356f752f725f2873bbc09f7049e1CAS |

[32]  G. C. Allen, N. S. Hush, Inorg. Chem. 1967, 6, 4.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXjtlejsQ%3D%3D&md5=e4eb3a5acaa0a546332cfca2830e2ab8CAS |

[33]  M. B. Robin, P. Day, in Advances in Inorganic Chemistry and Radiochemistry (Eds H. J. Emeléus, A. G. Sharpe) 1968, Vol. 10, pp. 247–422 (Academic Press: New York, NY).

[34]  D. R. Kattnig, B. Mladenova, G. Grampp, C. Kaiser, A. Heckmann, C. Lambert, J. Phys. Chem. C 2009, 113, 2983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVCgsLc%3D&md5=4ca030a9b84028bc2eb3348d3383e964CAS |

[35]  G. Lemercier, A. Bonne, M. Four, L. M. Lawson-Daku, C. R. Chim. 2008, 11, 709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1yktro%3D&md5=14d6aa1db9935206f5e54952d12d8dbeCAS |

[36]  C. Hua, D. M. D’Alessandro, CrystEngComm 2014, 16, 6331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKjs7fK&md5=28bbbce5d1f0aeeb6b03f229f24a596cCAS |

[37]  F. J. Rizzuto, T. B. Faust, B. Chan, C. Hua, D. M. D’Alessandro, C. J. Kepert, Chem. – Eur. J. 2014, 20, 17597.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFWjsr3F&md5=5abf7a9da7633b9d4b755d4a41a610faCAS |

[38]  Y. Nakano, T. Yagyu, T. Hirayama, A. Ito, K. Tanaka, Polyhedron 2005, 24, 2141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFymsbnP&md5=5d352e80f586fbc3e1f0ab7fd34dfb06CAS |

[39]  D. Hvasanov, A. F. Mason, D. C. Goldstein, M. Bhadbhade, P. Thordarson, Org. Biomol. Chem. 2013, 11, 4602.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVWmtbvL&md5=9c74459fcae8ef29bb984068faaa83f9CAS |

[40]  B. P. Sullivan, J. M. Calvert, T. J. Meyer, Inorg. Chem. 1980, 19, 1404.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXitVyis7c%3D&md5=d80d8f288ce87faafea3beb6cf4dedcbCAS |

[41]  Y. Liu, J.-R. Li, W. M. Verdegaal, T.-F. Liu, H.-C. Zhou, Chem. – Eur. J. 2013, 19, 5637.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlantrw%3D&md5=83d03f696556346975654e3a9c022b78CAS |

[42]  CrysAlis PRO 2014 (Agilent Technologies Ltd: Yarnton, UK).

[43]  L. Farrugia, J. Appl. Cryst. 1999, 32, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVSlurk%3D&md5=e0ff15107f5b5db7053aa30bb6753041CAS |

[44]  G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, A71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  G. M. Sheldrick, SHELXTL Reference Manual: Version 5 1996 (Analytical X-ray Instruments Inc.: Madison, WI).

[46]  T. M. McPhillips, S. E. McPhillips, H.-J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=4b06744951e5db9160e97e445120839fCAS |

[47]  W. Kabsch, Acta Crystallogr. Sect. D 2010, 66, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SisLc%3D&md5=7bae66ce10b6a77cc2684bc15139b7eeCAS |