Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Effect of Hydrogen Peroxide on the Extraction of Components of Cedar Powder with Tetrabutylphosphonium Hydroxide Aqueous Solution at 60°C

Sachiko Yamanaka A C , Koichi Yoshioka B , Hisashi Miyafuji B and Hiroyuki Ohno A C D
+ Author Affiliations
- Author Affiliations

A Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.

B Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Hangi-cho, 1-5, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.

C Functional Ionic Liquid Laboratories, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.

D Corresponding author. Email: ohnoh@cc.tuat.ac.jp

Australian Journal of Chemistry 70(3) 322-327 https://doi.org/10.1071/CH16454
Submitted: 2 August 2016  Accepted: 7 September 2016   Published: 28 September 2016

Abstract

We successfully dissolved cedar powder with tetrabutylphosphonium hydroxide ([P4 4 4 4]OH) aqueous solution at 60°C. The dissolution was accelerated by the addition of H2O2. At the initial stage, cellulose was more soluble than hemicellulose and lignin. Both hemicellulose and lignin were gradually dissolved in this solution containing H2O2. Cellulose chains were revealed to be cut into shorter chains in this solution. The lignin network was also found to be partly broken at 60°C. These steps induced components with higher-molecular-weight fractions that cannot be extracted with polar ionic liquids to dissolve. Also, low-molecular-weight fractions such as vanillin and 5-(hydroxymethyl)furfural were found in the resulting solution. Breakage of ether bonds of polysaccharides and lignin and further oxidation were attributed to the active oxygens generated from H2O2. The aqueous mixture reported here is a protocol that can be used to dissolve woody biomass under mild conditions.


References

[1]  B. Yang, C. E. Wyman, Biofuels Bioprod. Biorefin. 2008, 2, 26.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVarurw%3D&md5=b2dca0a69585eae59a2aeeadb2f68153CAS |

[2]  E. I. Gürbüz, J. M. R. Gallo, D. M. Alonso, S. G. Wettstein, W. Y. Lim, J. A. Dumesic, Angew. Chem. Int. Ed. 2013, 52, 1270.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  P. Zugenmaier, Prog. Polym. Sci. 2001, 26, 1341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslCjsbo%3D&md5=b9e7c304095cdb981740294f1884c67dCAS |

[4]  Y. Nishiyama, P. Langan, H. Chanzy, J. Am. Chem. Soc. 2002, 124, 9074.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1eqsLk%3D&md5=e8b7d814a5804f6502e969e9aca303f0CAS | 12149011PubMed |

[5]  M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFSisr0%3D&md5=92323f6e591481c1a1481bbb767093dfCAS | 19629083PubMed |

[6]  J. P. Hallett, T. Welton, Chem. Rev. 2011, 111, 3508.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlOlt7s%3D&md5=b982137e80e7a23ddc814a4f3aa077c9CAS | 21469639PubMed |

[7]  N. Sun, H. Rodíguez, M. Rahman, R. D. Rogers, Chem. Commun. 2011, 1405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1Ciuw%3D%3D&md5=f66516235eadef60eb02408bc0a01e40CAS |

[8]  Y. Fukaya, K. Hayashi, M. Wada, H. Ohno, Green Chem. 2008, 10, 44.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCruw%3D%3D&md5=c5fc65eac35ccb1547b9bf0736053e09CAS |

[9]  M. Mazza, D.-A. Catana, C. Vaca-Garcia, C. Cecutti, Cellulose 2009, 16, 207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVCgtLg%3D&md5=e3ef480ad2c8e8e7fd0fcf2f8df863c4CAS |

[10]  S. Padmanabhan, M. Kim, H. W. Blanch, J. M. Prausnitz, Fluid Phase Equilib. 2011, 309, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWjsLfF&md5=72c62c1d5d940e516d99f6673623f80bCAS |

[11]  C. Olsson, A. Idstrom, L. Nordstierna, G. Westman, Carbohydr. Polym. 2014, 99, 438.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFartrzK&md5=3143ba908c553fa967ce7eb526df8be2CAS | 24274528PubMed |

[12]  H. Ohno, Y. Fukaya, Chem. Lett. 2009, 38, 2.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wms78%3D&md5=671be3b75b623b3ec07494975be10af8CAS |

[13]  M. Abe, Y. Fukaya, H. Ohno, Chem. Commun. 2012, 1808.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVWrsg%3D%3D&md5=0275920f6b02600e2f906972f725a309CAS |

[14]  M. Abe, T. Yamada, H. Ohno, RSC Adv. 2014, 4, 17136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVWnsLg%3D&md5=099b48224a9e8678694e0ddb16e7dd22CAS |

[15]  M. Abe, S. Yamanaka, H. Yamada, T. Yamada, H. Ohno, Green Chem. 2015, 17, 4432.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFWjur3I&md5=02321c9dd7227464373687eea601e4b5CAS |

[16]  A. Brandt, J. Grasvik, J. P. Hallett, T. Welton, Green Chem. 2013, 15, 550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFOlurw%3D&md5=32306f7c37bbf25bdfd1f84a986557cbCAS |

[17]  Y. Fukaya, A. Tsukamoto, K. Kuroda, H. Ohno, Chem. Commun. 2011, 1994.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlagu70%3D&md5=663a9171d7c0d8a52519b5c8c97e0c4bCAS |

[18]  K. Yoshioka, T. Yamada, H. Ohno, H. Miyafuji, RSC Adv. 2015, 5, 72405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlOgtrrM&md5=82fc9d2e0859f958db64ad96e2604623CAS |