Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Quantum Theory of Atoms-in-Molecules Perspective and DFT Study of Two Natural Products: Trans-Communic Acid and Imbricatolic Acid

Sarvesh Kumar Pandey A E , Mohammad Faheem Khan B D , Shikha Awasthi C D , Reetu Sangwan B and Sudha Jain B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India.

B Department of Chemistry, University of Lucknow, Lucknow 226 007, Uttar Pradesh, India.

C Department of Material Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India.

D These authors have contributed equally to this work as second authors.

E Corresponding author. Email: spsarvesh22@gmail.com

Australian Journal of Chemistry 70(3) 328-337 https://doi.org/10.1071/CH16406
Submitted: 11 July 2016  Accepted: 7 September 2016   Published: 20 October 2016

Abstract

The topological features of the charge densities, ρ(r), and the chemical reactivity of two most biologically relevant and chemically interesting scaffold systems i.e. trans-communic acid and imbricatolic acid have been determined using density functional theory. To identify, characterize, and quantify efficiently, the non-covalent interactions of the atoms in the molecules have been investigated quantitatively using Bader's quantum theory of atoms-in-molecules (QTAIM) technique. The bond path is shown to persist for a range of weak H···H as well as C···H internuclear distances (in the range of 2.0–3.0 Å). These interactions exhibit all the hallmarks of a closed-shell weak interaction. To get insights into both systems, chemical reactivity descriptors, such as HOMO–LUMO, ionization potential, and chemical hardness, have been calculated and used to probe the relative stability and chemical reactivity. Some other useful information is also obtained with the help of several other electronic parameters, which are closely related to the chemical reactivity and reaction paths of the products investigated. Trans-communic acid seems to be chemically more sensitive when compared with imbricatolic acid due to its experimentally observed higher half-maximal inhibitory concentration (bioactivity parameter) value, which is in accordance with its higher chemical reactivity as theoretically predicted using density functional theory-based reactivity index. The quantum chemical calculations have also been performed in solution using different solvents, and the relative order of their structural and electronic properties as well as QTAIM-based parameters show patterns similar to those observed in gas phase only. This study further exemplifies the use and successful application of the bond path concept and the quantum theory of atoms-in-molecules.


References

[1]  C. I. Keeling, J. Bohlmann, Phytochemistry 2006, 67, 2415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFertLbO&md5=bef9f9879220da6f83ec22f61bb91a7dCAS | 16996548PubMed |

[2]  L. M. T. Frija, R. F. M. Frade, C. A. M. Afonso, Chem. Rev. 2011, 111, 4418.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslGmu7c%3D&md5=33823a1558255245c46e100e09a4dd13CAS |

[3]  M. F. Khan, P. Kumar, J. Pandey, A. K. Srivastava, A. K. Tamrakar, R. Maurya, Bioorg. Med. Chem. Lett. 2012, 22, 4636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt1SitrY%3D&md5=ae7d97e96d20d77175ceb19cb1480f43CAS | 22726926PubMed |

[4]  P. Rawat, M. F. Khan, M. Kumar, A. K. Tamarkar, A. K. Srivastava, K. R. Arya, R. Maurya, Fitoterapia 2010, 81, 162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1anurk%3D&md5=4bdda0cc558d46bb648f19772b1902b8CAS | 19686818PubMed |

[5]  V. Verma, V. Sharma, V. Singh, R. Kumar, M. F. Khan, A. K. Singh, R. Sharma, K. R. Arya, J. P. Maikhuri, D. Dalela, Phytother. Res. 2014, 28, 1196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlWgtrnO&md5=893f1a2958fc96e1466df2c8f0c32c39CAS | 24399792PubMed |

[6]  S. Sharma, G. Brahmachari, B. Banerjee, K. Nurjamal, A. Kumar, A. K. Srivastava, N. Misra, S. K. Pandey, V. K. Rajnikant, Gupta, J. Mol. Struct. 2016, 1118, 344.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmsF2qtbo%3D&md5=30767748eeb23e2f3e8d3262d664369dCAS |

[7]  A. K. Srivastava, S. K. Pandey, N. Misra, Chem. Phys. Lett. 2016, 655–656, 71.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  H. He, H. Chen, Y. Zheng, X. Zhang, X. Yao, Z. Yu, S. Zhang, Aust. J. Chem. 2013, 66, 50.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVyltrc%3D&md5=b9f282ac867cd4e88dc629af65facacfCAS |

[9]  T. Kageyama, S. Uneme, M. Takase, K. Nomura, T. Nishinaga, Aust. J. Chem. 2014, 67, 722.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslyrtL0%3D&md5=ea4efc90fc1696ff5aafb0b0835c1892CAS |

[10]  K. Geetha, T. N. Rekha, M. Umadevi, B. J. M. Rajkumar, G. V. Sathe, P. Vanelle, T. Terme, O. Khoumeri, Aust. J. Chem. 2015, 69, 76.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  E. Montiel, J. Cruz, N. Jayanthi, S. Bernés, T. Pandiyan, Aust. J. Chem. 2010, 63, 965.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1ams7k%3D&md5=b4eee52163181ed6c3d483e285cdd980CAS |

[12]  B. M. Alzoubi, R. Puchta, R. van Eldik, Aust. J. Chem. 2010, 63, 236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVagtrc%3D&md5=42bc1205da2ad567cc3a1196e665a48aCAS |

[13]  A. C. Tsipis, RSC Adv. 2014, 4, 32504.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFCku7rI&md5=c223520baaf451ba0ba3d02d8b44846dCAS |

[14]  H. Vovusha, B. Sanyal, RSC Adv. 2015, 5, 67427.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Glt7vK&md5=0fc3351522b6f0f59f926b710572aca5CAS |

[15]  Y. Vesga, C. Diaza, F. E. Hernandez, RSC Adv. 2014, 4, 60974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVykur7L&md5=a60f08c520213d0666660952500547dcCAS |

[16]  A. K. Srivastava, N. Misra, Chem. Phys. Lett. 2014, 612, 302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVCjtbfE&md5=5f68b4585bb6bfe1f57a4b3fa97ee531CAS |

[17]  R. F. W. Bader, Atoms in Molecules: A Quantum Theory (2nd edn) 1990 (Oxford: New York, NY).

[18]  R. F. W. Bader, Chem. Rev. 1991, 91, 893.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvFWgt7s%3D&md5=c59b5dffa55a01dd72e73af5fff7f0f0CAS |

[19]  R. F. W. Bader, Chem. – Eur. J. 2006, 12, 2896.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1Sqtbs%3D&md5=e475d7201be763fee34b37cb24e52f43CAS |

[20]  R. F. W. Bader, J. Phys. Chem. A 2009, 113, 10391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOgu7fM&md5=50f957fa45996e97e00041b70f775108CAS |

[21]  T. Yamaguchi, Y. Yamamoto, D. Kinoshita, K. Akiba, Y. Zhang, C. A. Reed, D. Hashizume, F. Lwasaki, J. Am. Chem. Soc. 2008, 130, 6894.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslOjsb4%3D&md5=74367fa5fe89cebbcef77911ac558f67CAS | 18459787PubMed |

[22]  M. Montejo, A. Navarro, G. J. Kearley, J. Va, J. Jesu, J. Am. Chem. Soc. 2004, 126, 15087.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVarurw%3D&md5=e92329243d5b41ac4bfbebb68c5a7bb3CAS | 15548006PubMed |

[23]  C. L. Firme, O. A. C. Antunes, P. M. Esteves, Chem. Phys. Lett. 2009, 468, 129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVaiug%3D%3D&md5=10a2cd39ef6dba014229f035d981e38bCAS |

[24]  U. Koch, P. L. A. Popelier, J. Phys.Chem. 1995, 99, 9747.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFWqtr4%3D&md5=a1875451e84dfab45f1b5148739c27b2CAS |

[25]  P. Popelier, Atoms in Molecules: An Introduction 2000 (Pearson Education: Harlow).

[26]  K. Kim, K. D. Jordan, J. Phys. Chem. 1994, 98, 10089.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFemsr4%3D&md5=7ca64849b34de89f69a5813bcae2f3e8CAS |

[27]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (Revision D.01) 2009 (Gaussian Inc.: Wallingford, CT).

[28]  T. A. Keith AIMAll Version 14.06.21 2014 (TK Gristmill Software: Overland Park, KS).

[29]  D. Cremer, E. Kraka, Croat. Chem. Acta 1984, 57, 1259.

[30]  M. T. Carroll, R. F. W. Bader, Mol. Phys. 1988, 65, 695.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtVaisbg%3D&md5=6fd23f2de94f679cd3808750f905bd3eCAS |

[31]  I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc. 2000, 122, 11154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1emt70%3D&md5=b3a9e604e7cc909f7c28787344ab94c8CAS |

[32]  E. Espinosa, E. Monils, C. Lecomte, Chem. Phys. Lett. 1998, 285, 170.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvF2jtL8%3D&md5=6f069f7ec1ee936303aca17086bafabaCAS |

[33]  B. D. Cremer, E. Kraka, Angew. Chem., Int. Ed. Engl. 1984, 23, 627.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  R. G. A. Bone, R. F. W. Bader, J. Phys. Chem. A 1996, 100, 10892.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVSks7o%3D&md5=146a613d8ad10057c247bbd5dd7684caCAS |

[35]  M. F. Bobrov, G. V. Popova, V. G. Tsirelson, Russ. J. Phys. Chem. 2006, 80, 584.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1WjtL0%3D&md5=ddd0de75df4897b68de1d23b6f25f623CAS |

[36]  P. Macchi, A. Sironi, Coord. Chem. Rev. 2003, 238–239, 382.

[37]  E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys. 2002, 117, 5529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVSgsr4%3D&md5=930878e335b37f10af4892e1aa001ef5CAS |

[38]  S. Jenkins, I. Morrison, Chem. Phys. Lett. 2000, 317, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlymtw%3D%3D&md5=5ccffa687e31d58f81d47bad180d05e6CAS |

[39]  R. F. W. Bader, H. Essén, J. Chem. Phys. 1984, 80, 1943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhs1ajtrc%3D&md5=bc9cbdb0aa9a0d3ff1ca5275cfbc4062CAS |

[40]  C. F. Matta, J. Hernandez-Trujillo, J. Phys. Chem. A 2003, 107, 7496.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1equrs%3D&md5=6316a548966715b717193ca76e459b53CAS |

[41]  T. Koopmans, Physica 1934, 1, 104.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXksV0%3D&md5=e5e42dec9101100828b79122edf9d296CAS |

[43]  R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 1983, 105, 7512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXht1yrtw%3D%3D&md5=61f974b13cd4808ccd699daceb35b840CAS |

[44]  R. G. Pearson, J. Chem. Sci. 2005, 117, 369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1KrsLrL&md5=d2d957df9a100ca860e41c77313a461aCAS |

[45]  H. Sklenar, J. Jager, Int. J. Quantum Chem. 1979, 16, 467.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXktFWitQ%3D%3D&md5=34c7bf0f753ea086a12a902d9606b1b5CAS |

[46]  R. G. Pearson, Inorg. Chem. 1988, 27, 734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXot1eltQ%3D%3D&md5=a2e545e5614ae49525ee069e96d35226CAS |

[47]  P. K. Chattaraj, B. Maiti, J. Am. Chem. Soc. 2003, 125, 2705.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Ojuw%3D%3D&md5=1b819bcc26f60b8edae0120e4409f6ebCAS | 12603158PubMed |

[48]  R. G. Pearson, Hard and Soft Acids and Bases 1973 (Dowden, Hutchinson Ross: Stroudsberg, PA).

[49]  R. G. Pearson, Acc. Chem. Res. 1993, 26, 250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitF2qtLY%3D&md5=fc4e74923f16c203a71774984e4b2ea4CAS |

[50]  R. G. Pearson, Chemical Hardness: Application from Molecules to Solid 1997 (Wiley-VCH: Weinheim).

[51]  K. D. Sen, D. M. P. Mingos, Chemical Hardness: Structure and Bonding 1993 (Springer: Berlin).

[52]  R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules 1989 (Oxford University Press: Oxford).

[53]  A. Vektariene, G. Vektaris, J. Svoboda, ARKIVOC 2009, 7, 311.

[54]  Y. G. Sıdır, M. Kumalar, E. Tas, J. Mol. Struct. 2010, 964, 134.
         | Crossref | GoogleScholarGoogle Scholar |