Optimised Syntheses of the Half-Sandwich Complexes FeCl(dppe)Cp*, FeCl(dppe)Cp, RuCl(dppe)Cp*, and RuCl(dppe)Cp
Josef B. G. Gluyas A , Neil J. Brown B , Julian D. Farmer B and Paul J. Low A CA School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
B Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
C Corresponding author. Email: paul.low@uwa.edu.au
Australian Journal of Chemistry 70(1) 113-119 https://doi.org/10.1071/CH16322
Submitted: 25 May 2016 Accepted: 19 June 2016 Published: 28 July 2016
Abstract
Thanks to their synthetic versatility, the half-sandwich metal chlorides MCl(dppe)(η5-C5R5) [M = Fe, Ru; dppe = 1,2-bis(diphenylphosphino)ethane, R = H (cyclopentadiene, Cp), CH3 (pentamethylcyclopentadiene, Cp*)] are staple starting materials in many organometallic laboratories. Here we present an overview of the synthetic methods currently available for FeCl(dppe)Cp*, FeCl(dppe)Cp, RuCl(dppe)Cp*, and RuCl(dppe)Cp, and describe in detail updated and optimised multigram syntheses of all four compounds.
References
[1] R. Poli, Chem. Rev. 1991, 91, 509.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVyrtr8%3D&md5=275562309903742b84f218718ef88110CAS |
[2] N. J. Coville, K. E. du Plooy, W. Pickl, Coord. Chem. Rev. 1992, 116, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsFWjtr4%3D&md5=dd29277adaf54a1b6d6832d1cbb223d2CAS |
[3] V. C. Gibson, S. K. Spitzmesser, Chem. Rev. 2003, 103, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFCmsrc%3D&md5=ee69601b6f4acf5c5cdbdbe5ed729e3cCAS | 12517186PubMed |
[4] K. C. Hultzsch, P. Voth, K. Beckerle, T. P. Spaniol, J. Okuda, Organometallics 2000, 19, 228.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVWqtw%3D%3D&md5=17fd746f6a99d5de353ad1c3990b1395CAS |
[5] E. Le Grognec, J. Claverie, R. Poli, J. Am. Chem. Soc. 2001, 123, 9513.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1amsLw%3D&md5=731f1862cbcd57528246edaa342c24d4CAS | 11572671PubMed |
[6] D. J. Jones, V. C. Gibson, S. M. Green, P. J. Maddox, A. J. P. White, D. J. Williams, J. Am. Chem. Soc. 2005, 127, 11037.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1WktLg%3D&md5=b75c0c97bde3a3b4e1b115b0219a4b81CAS | 16076211PubMed |
[7] C. Ganter, Chem. Soc. Rev. 2003, 32, 130.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFGmt7s%3D&md5=322853b2455af03421fbba8e946f3c99CAS | 12792936PubMed |
[8] R. L. Halterman, Chem. Rev. 1992, 92, 965.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvFSgtrw%3D&md5=c356286615c5c15fc76a9feb9b4530e7CAS |
[9] G. Consiglio, F. Morandini, Chem. Rev. 1987, 87, 761.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksF2jtL0%3D&md5=7e695a94414594479d44a01231f574a8CAS |
[10] C. G. Newton, D. Kossler, N. Cramer, J. Am. Chem. Soc. 2016, 138, 3935.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XisVWmt7s%3D&md5=7b8ab1a1bd7d31c5a06f09891ab5d9cbCAS |
[11] U. Siemeling, Chem. Rev. 2000, 100, 1495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVyktLk%3D&md5=dda9d5f6f12d6bc8eefd8c3a9f857ddeCAS | 11749274PubMed |
[12] E. B. Bauer, Chem. Soc. Rev. 2012, 41, 3153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVOhu7k%3D&md5=ee1e7e82c9ad808ec00a0ed656e07e2fCAS | 22306968PubMed |
[13] C. G. Hartinger, P. J. Dyson, Chem. Soc. Rev. 2009, 38, 391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSntLs%3D&md5=d5056cd8273e3d9a0bda4c3024312f46CAS | 19169456PubMed |
[14] E. Meggers, Curr. Opin. Chem. Biol. 2007, 11, 287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVOnsr8%3D&md5=33f7594c0553574d4e566e7ebde5313bCAS | 17548234PubMed |
[15] K. J. Kilpin, P. J. Dyson, Chem. Sci. 2013, 4, 1410.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlyms7c%3D&md5=7bf5654d8e43b6be28eed982411852d9CAS |
[16] G. Süss-Fink, Dalton Trans. 2010, 39, 1673.
| Crossref | GoogleScholarGoogle Scholar | 20449402PubMed |
[17] H. Werner, Organometallics 2005, 24, 1036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFensrk%3D&md5=76c0ad9a7959296494020325c5918bfeCAS |
[18] J. M. Lynam, Chem. – Eur. J. 2010, 16, 8238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlejtL8%3D&md5=3a5488f688eb5b782a55883a6a985b27CAS | 20607768PubMed |
[19] P. B. Glaser, T. D. Tilley, Organometallics 2004, 23, 5799.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptValtL4%3D&md5=e01f27cccf45e03c13292576b5ff868eCAS |
[20] P. J. Low, M. I. Bruce, Adv. Organomet. Chem. 2001, 48, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVSjsg%3D%3D&md5=c03cb957b4aadb5f768320e883b28af9CAS |
[21] M. I. Bruce, P. J. Low, Adv. Organomet. Chem. 2004, 50, 179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlansb8%3D&md5=d643a3e3303676c87a741d0ba2a3e60eCAS |
[22] Y.-F. Han, W.-G. Jia, W.-B. Yu, G.-X. Jin, Chem. Soc. Rev. 2009, 38, 3419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVanurrE&md5=411b3b9600d67f8ad3ee3b44826c9338CAS | 20449060PubMed |
[23] G.-L. Wang, Y.-J. Lin, H. Berke, G.-X. Jin, Inorg. Chem. 2010, 49, 2193.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWlu7o%3D&md5=f9146192c85ef9ed32982b22c4bc367bCAS | 20121071PubMed |
[24] B. Therrien, Eur. J. Inorg. Chem. 2009, 2009, 2445.
| Crossref | GoogleScholarGoogle Scholar |
[25] J. Mattsson, P. Govindaswamy, A. K. Renfrew, P. J. Dyson, P. Štěpnička, G. Süss-Fink, B. Therrien, Organometallics 2009, 28, 4350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVeiurg%3D&md5=af51dcf4b08accb6f2055f3a436c2a36CAS |
[26] N. Gauthier, G. Argouarch, F. Paul, M. G. Humphrey, L. Toupet, S. Ababou-Girard, H. Sabbah, P. Hapiot, B. Fabre, Adv. Mater. 2008, 20, 1952.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1ymtL8%3D&md5=f3618679656e5ba0e222ad84c8e0b401CAS |
[27] G. Grelaud, N. Gauthier, Y. Luo, F. Paul, B. Fabre, F. Barrière, S. Ababou-Girard, T. Roisnel, M. G. Humphrey, J. Phys. Chem. C 2014, 118, 3680.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht12mu70%3D&md5=81ed23eab6efb652c9ebfc9fbe469690CAS |
[28] M. H. Garcia, M. P. Robalo, A. R. Dias, M. T. Duarte, W. Wenseleers, G. Aerts, E. Goovaerts, M. P. Cifuentes, S. Hurst, M. G. Humphrey, M. Samoc, B. Luther-Davies, Organometallics 2002, 21, 2107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVGnt78%3D&md5=d24f18591d454ecd846dcc540788b991CAS |
[29] Q. Ge, G. T. Dalton, M. G. Humphrey, M. Samoc, T. S. A. Hor, Chem. Asian J. 2009, 4, 998.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsF2kur0%3D&md5=651bd0da181b817760d7ac7c790600b0CAS | 19434645PubMed |
[30] Q. Ge, T. C. Corkery, M. G. Humphrey, M. Samoc, T. S. A. Hor, Dalton Trans. 2009, 6192.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVKksbs%3D&md5=4f48a264c23eaa4ca14ddce8f94a55e5CAS | 20449116PubMed |
[31] M. P. Cifuentes, M. G. Humphrey, J. P. Morrall, M. Samoc, F. Paul, C. Lapinte, T. Roisnel, Organometallics 2005, 24, 4280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVChtb4%3D&md5=3e1b7233df0676bfd095a9cec886972dCAS |
[32] N. Gauthier, G. Argouarch, F. Paul, L. Toupet, A. Ladjarafi, K. Costuas, J.-F. Halet, M. Samoc, M. P. Cifuentes, T. C. Corkery, M. G. Humphrey, Chem. – Eur. J. 2011, 17, 5561.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1CmsL4%3D&md5=cf7f8621dba0e9801d1c81aba5387390CAS | 21495098PubMed |
[33] F. Malvolti, C. Rouxel, A. Triadon, G. Grelaud, N. Richy, O. Mongin, M. Blanchard-Desce, L. Toupet, F. I. A. Razak, R. Stranger, M. Samoc, X. Yang, G. Wang, A. Barlow, M. P. Cifuentes, M. G. Humphrey, F. Paul, Organometallics 2015, 34, 5418.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVentrfO&md5=a87372d759d077834ed341a131247d7eCAS |
[34] W. E. Geiger, F. Barrière, Acc. Chem. Res. 2010, 43, 1030.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFCjsbs%3D&md5=0509cf41f8e78b15772d5aa60265f5ecCAS | 20345126PubMed |
[35] W. E. Geiger, Coord. Chem. Rev. 2013, 257, 1459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFahtLnO&md5=078fe0ac690464870160558d47d97305CAS |
[36] M. Parthey, J. B. G. Gluyas, M. A. Fox, P. J. Low, M. Kaupp, Chem. – Eur. J. 2014, 20, 6895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVWmsbY%3D&md5=61db98fa26fe467b5d09f32e2fa790c9CAS | 24740610PubMed |
[37] P. J. Low, Coord. Chem. Rev. 2013, 257, 1507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2gtb3I&md5=5b8468d7f23fa68c20a25bf0dee3b874CAS |
[38] J.-F. Halet, C. Lapinte, Coord. Chem. Rev. 2013, 257, 1584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFalsLbL&md5=1fe51b79185676db1f104426630e4882CAS |
[39] R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J. A. Gladysz, J. Am. Chem. Soc. 2000, 122, 810.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVyhsw%3D%3D&md5=0f3ce73f31e25b0146a19becc6a1bfbdCAS |
[40] K. Venkatesan, O. Blacque, H. Berke, Dalton Trans. 2007, 1091.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVKksL8%3D&md5=99f9b017aee5b4ade7d4bab9382c3255CAS | 17339991PubMed |
[41] M. J. Mays, P. L. Sears, J. Chem. Soc., Dalton Trans. 1973, 1873.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXjs1Sl&md5=67d5082106071d9877d2ea4a8245d9beCAS |
[42] G. S. Ashby, M. I. Bruce, I. B. Tomkins, R. C. Wallis, Aust. J. Chem. 1979, 32, 1003.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlvFegu7c%3D&md5=337f7bcb4d0818ebb21ee89cc5abd4f7CAS |
[43] Y. Mutoh, Y. Ikeda, Y. Kimura, Y. Ishii, Chem. Lett. 2009, 38, 534.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFGksbg%3D&md5=3fbee6d4ae7444b52a40a2e45c37cbe0CAS |
[44] E. M. Long, N. J. Brown, W. Y. Man, M. A. Fox, D. S. Yufit, J. A. K. Howard, P. J. Low, Inorg. Chim. Acta 2012, 380, 358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFShs7Y%3D&md5=2651572d559c064edb9bccf7956cd642CAS |
[45] C.-W. Chang, P.-C. Ting, Y.-C. Lin, G.-H. Lee, Y. Wang, J. Organomet. Chem. 1998, 553, 417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVCktro%3D&md5=4d669df078e51c3b7522b144d3c2dd53CAS |
[46] A. P. Shaw, B. L. Ryland, J. R. Norton, D. Buccella, A. Moscatelli, Inorg. Chem. 2007, 46, 5805.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsVaju70%3D&md5=04bd9ae57907b00ea3260cc14cdf3536CAS | 17569530PubMed |
[47] A. Burgun, F. Gendron, P. A. Schauer, B. W. Skelton, P. J. Low, K. Costuas, J.-F. Halet, M. I. Bruce, C. Lapinte, Organometallics 2013, 32, 5015.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVaqur8%3D&md5=157a016f618f7683c95d4fd237ab5d9eCAS |
[48] C. Roger, P. Marseille, C. Salus, J. R. Hamon, C. Lapinte, J. Organomet. Chem. 1987, 336, C13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlWhsL0%3D&md5=379ad07baa9ccabda30fcf73c0e79cdbCAS |
[49] C. Roger, P. Hamon, L. Toupet, H. Rabaa, J. Y. Saillard, J.-R. Hamon, C. Lapinte, Organometallics 1991, 10, 1045.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1Cntrg%3D&md5=515e4993f5946a2d35a7d410c64ea563CAS |
[50] H. Lehmkuhl, G. Mehler, R. Benn, A. Rufińska, G. Schroth, C. Krüger, E. Raabe, Chem. Ber. 1987, 120, 1987.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXit1Shtg%3D%3D&md5=81923efd033f9aec0cfd754cd6796863CAS |
[51] D. Patel, A. Wooles, A. D. Cornish, L. Steven, E. S. Davies, D. J. Evans, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Dalton Trans. 2015, 44, 14159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFyqtL3M&md5=adbb6cbff926051ae9aee096c0ed6e82CAS | 26185807PubMed |
[52] D. W. Macomber, M. D. Rausch, J. Am. Chem. Soc. 1983, 105, 5325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkslSru7w%3D&md5=b26c8890fd3ef99db4284a407fde054aCAS |
[53] U. Behrens, R. E. Dinnebier, S. Neander, F. Olbrich, Organometallics 2008, 27, 5398.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWmt7rF&md5=5ed17c11ebc3b63239384ed5bb690868CAS |
[54] R. Langer, F. Bönisch, L. Maser, C. Pietzonka, L. Vondung, T. P. Zimmermann, Eur. J. Inorg. Chem. 2015, 2015, 141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2kt77F&md5=bf83a58bded21956cace15add00208e9CAS |
[55] T. S. Piper, F. A. Cotton, G. Wilkinson, J. Inorg. Nucl. Chem. 1955, 1, 165.
| Crossref | GoogleScholarGoogle Scholar |
[56] E. O. Fischer, E. Moser, Inorg. Synth. 1970, 12, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXhtlamsw%3D%3D&md5=d44a4665f2bd57ccc02146534e4fe78fCAS |
[57] R. B. King, L. W. Houk, K. H. Pannell, Inorg. Chem. 1969, 8, 1042.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktVensb8%3D&md5=328fbe2742be18cb1088bd421f4cf8d4CAS |
[58] D. Astruc, Tetrahedron 1983, 39, 4027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtl2itLg%3D&md5=186456b855f99fa77d11cb22af4a29bbCAS |
[59] J. Ruiz, M. Lacoste, D. Astruc, J. Am. Chem. Soc. 1990, 112, 5471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltFGnu7w%3D&md5=5a90e9ccaef2dc9dc4a10db0fc9dfab0CAS |
[60] D. H. Hill, M. A. Parvez, A. Sen, J. Am. Chem. Soc. 1994, 116, 2889.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitFyjtbs%3D&md5=21f9588bbb132840cd9661d7ed9f3782CAS |
[61] J. A. van Rijn, E. Gouré, M. A. Siegler, A. L. Spek, E. Drent, E. Bouwman, J. Organomet. Chem. 2011, 696, 1899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFKhtrk%3D&md5=0bd133c62f115e4f2807b34d25de97bfCAS |
[62] S. El-Tarhuni, M. Ho, M. H. Kawser, S. Shi, M. W. Whiteley, J. Organomet. Chem. 2014, 752, 30.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltVaisg%3D%3D&md5=bc7584d759e08bb7610180b999da70e3CAS |
[63] K. Ziegler, H. Froitzheim-Kühlhorn, K. Hafner, Chem. Ber. 1956, 89, 434.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XnslKjsQ%3D%3D&md5=244329ce053384e4ee6694c159e97d60CAS |
[64] J. Thiele, Chem. Ber. 1901, 34, 68.
| Crossref | GoogleScholarGoogle Scholar |
[65] O. T. Beachley, J. C. Pazik, T. E. Glassman, M. R. Churchill, J. C. Fettinger, R. Blom, Organometallics 1988, 7, 1051.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitVCltb8%3D&md5=b304375cb51993466eb6ecd94c0f9dd3CAS |
[66] P. M. Treichel, D. A. Komar, P. J. Vincenti, Synth. React. Inorg. Met.-Org. Chem. 1984, 14, 383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlslWntb8%3D&md5=978d35b21d2d18b2eab961a3a01c11fdCAS |
[67] M. I. Bruce, C. Hammeister, A. G. Swincer, R. C. Wallis, Inorg. Synth. 1982, 21, 78.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXnt1ekuw%3D%3D&md5=628303716e08f01cc777c7cfd08389acCAS |
[68] T. D. Tilley, R. H. Grubbs, J. E. Bercaw, Organometallics 1984, 3, 274.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmvVCqsg%3D%3D&md5=33932a1a4e60917bfd1b63f2d9b24fc0CAS |
[69] N. Oshima, H. Suzuki, Y. Moro-Oka, Chem. Lett. 1984, 7, 1161.
| Crossref | GoogleScholarGoogle Scholar |
[70] U. Koelle, J. Kossakowski, J. Organomet. Chem. 1989, 362, 383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtFCltbw%3D&md5=3bcdae59b70237196899ea48e7d55c8fCAS |
[71] L. Luo, N. Zhu, N.-J. Zhu, E. D. Stevens, S. P. Nolan, Organometallics 1994, 13, 669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXislSksbc%3D&md5=a9b56c72df9666163ce74bfe8b7aba89CAS |
[72] D.-H. Lee, J. Korean Chem. Soc. 1992, 36, 248.
| 1:CAS:528:DyaK38XksVyrt7o%3D&md5=0975e9fbee1167fe827abe7d73c2922fCAS |
[73] M. I. Bruce, B. G. Ellis, P. J. Low, B. W. Skelton, A. H. White, Organometallics 2003, 22, 3184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFCiu70%3D&md5=7b2cfbe6ad760278518952a12aedd8ccCAS |
[74] K. S. Singh, C. Thöne, M. R. Kollipara, J. Organomet. Chem. 2005, 690, 4222.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1ehurk%3D&md5=c943d6abbe5c1bac14794667f74048fbCAS |
[75] S. G. Davies, F. Scott, J. Organomet. Chem. 1980, 188, C41.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXkslWqsbc%3D&md5=6d4c1986a732eff5b751c70cc4eb8589CAS |
[76] P. M. Treichel, D. A. Komar, Synth. React. Inorg. Met.-Org. Chem. 1980, 10, 205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXls1ygur0%3D&md5=118c8f1d0ba55d1b9c9740641d26aff1CAS |
[77] G. Consiglio, F. Morandini, F. Bangerter, Inorg. Chem. 1982, 21, 455.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XjsFGjtA%3D%3D&md5=94228860d7ebb23a1e287df4b334d1d8CAS |
[78] A. Gutierrez Alonso, L. Ballester Reventos, J. Organomet. Chem. 1988, 338, 249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXjvFWntw%3D%3D&md5=9f0d50f240d4fcaae00ed2c9c19f0f47CAS |
[79] L. Ballester, A. Gutierrez, M. F. Perpinan, J. Chem. Educ. 1989, 66, 777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmslCm&md5=b4f19cf674b6ff2d2499abc6abda45baCAS |
[80] E. M. Moura, M. H. Dickman, H. G. L. Siebald, G. J. Gama, Polyhedron 1999, 18, 2899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1Whs7k%3D&md5=e19f17941e21ceec67e1241d0d336738CAS |
[81] M. I. Bruce, M. G. Humphrey, J. M. Patrick, A. H. White, Aust. J. Chem. 1983, 36, 2065.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktVOgur8%3D&md5=dcefccbf22a83678a0fb8f2152016350CAS |
[82] H. Nagashima, K. Yamaguchi, K. Mukai, K. Itoh, J. Organomet. Chem. 1985, 291, c20.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xit1Gjs78%3D&md5=fda8440cfc3ddfaf64d407f160f195b5CAS |
[83] M. O. Albers, H. E. Oosthuizen, D. J. Robinson, A. Shaver, E. Singleton, J. Organomet. Chem. 1985, 282, c49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltVGisb8%3D&md5=bfb31facff9a08091a5f2914084ffb2aCAS |
[84] M. O. Albers, D. J. Robinson, A. Shaver, E. Singleton, Organometallics 1986, 5, 2199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtV2itb4%3D&md5=d70970a821f58303fb074b2608a18af2CAS |
[85] D. S. Perekalin, E. E. Karslyan, E. A. Trifonova, A. I. Konovalov, N. L. Loskutova, Y. V. Nelyubina, A. R. Kudinov, Eur. J. Inorg. Chem. 2013, 2013, 481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOrsrvL&md5=e2c24e79b2bb4d610c69768e525c67dcCAS |
[86] D. E. Bublitz, W. E. McEwen, J. Kleinberg, Org. Synth. 1961, 41, 96.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XksFClsQ%3D%3D&md5=5e7afb2871e57f0f81ffdef224868d8cCAS |
[87] D. S. Perekalin, E. E. Karslyan, P. V. Petrovskii, A. O. Borissova, K. A. Lyssenko, A. R. Kudinov, Eur. J. Inorg. Chem. 2012, 2012, 1485.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2ru7%2FN&md5=c1d29693ad96597e7c1170f97f394f53CAS |
[88] J. Chatt, R. G. Hayter, J. Chem. Soc. (Res) 1961, 896.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXos1amsw%3D%3D&md5=ba82f63f80c90bd6fdcac2b8c2cbb848CAS |
[89] E. M. Moura, M. H. Dickman, H. G. L. Siebald, G. J. Gama, Polyhedron 1999, 18, 2899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1Whs7k%3D&md5=e19f17941e21ceec67e1241d0d336738CAS |
[90] R. S. Dickson, B. J. Dobney, F. W. Eastwood, J. Chem. Educ. 1987, 64, 898.
| Crossref | GoogleScholarGoogle Scholar |
[91] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslKms7Y%3D&md5=4355b5cc11d90e309f18cd3d9c6917c2CAS |
[92] U. Edlund, Org. Magn. Reson. 1977, 9, 593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhs12iu7o%3D&md5=753e5b20a649df4800f67e09173dbad6CAS |