Al2O3 Microspheres Prepared by Cathode Plasma Electrolysis
Chenxu Liu A , Jin Zhang A B , Yedong He A , Peng Wang A , Shunjie Deng A and Shuguang Zhang AA Beijing Key Laboratory for Corrosion Erosion and Surface Technology, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
B Corresponding author. Email: zhangjin@ustb.edu.cn
Australian Journal of Chemistry 70(1) 120-124 https://doi.org/10.1071/CH16214
Submitted: 2 April 2016 Accepted: 20 June 2016 Published: 12 August 2016
Abstract
Al2O3 microspheres were prepared by cathode plasma electrolysis (CPE) in an aqueous solution of Al(NO)3·9H2O. Compared with high-temperature calcination methods, the CPE method afforded the preparation of microspheres directly at room temperature. The results showed that regular microspheres formed under relatively high concentrations of Al(NO)3·9H2O. The microspheres, with diameters mostly in the range of 5–30 μm, consisted of γ-Al2O3 and α-Al2O3. The possible formation mechanism included the following processes: (1) Al(OH)3 intermediate was formed during the cathodic reactions; (2) plasma energized the intermediate to Al2O3; and (3) microspheres formed under the effect of the surface tension.
References
[1] J. Tian, P. Tian, H. Pang, G. Ning, R. F. Bogale, H. Cheng, S. Shen, Microporous Mesoporous Mater. 2016, 223, 27.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslOgurnI&md5=fcda6f55fa4bb45a0ec02f471b6839cdCAS |
[2] J. Sun, T. Gan, Y. Deng, Z. Shi, Z. Lv, Sens. Actuators, B 2015, 211, 339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisVSlu7c%3D&md5=a1d183cfaba2fc051ef3e5f9148ad2bcCAS |
[3] M. Y. Li, Z. C. Si, X. D. Wu, D. Weng, F. Y. Kang, J. Colloid Interface Sci. 2014, 417, 369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1KhtA%3D%3D&md5=336a2ac60b092f2cd544f08111c389b6CAS |
[4] M. Yu, K. C. Zhou, Y. Zhang, D. Zhang, Ceram. Int. 2014, 40, 1215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFCjtr4%3D&md5=a3fa94ac7c43c3800cedf42742c9179eCAS |
[5] X. S. Cheng, P. G. Liu, X. Y. Li, A. Z. Shui, L. K. Zeng, J. Wuhan Univ. Technol., Mater. Sci. Ed. 2007, 22, 144.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFShur0%3D&md5=01047375ed45be8e1b35ce3011f97b34CAS |
[6] Z. Károly, J. Szépvölgyi, Powder Technol. 2003, 132, 211.
| Crossref | GoogleScholarGoogle Scholar |
[7] T. Hyodo, M. Murakami, Y. Shimizu, M. Egashira, J. Eur. Ceram. Soc. 2005, 25, 3563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFCrtr0%3D&md5=fbb64c13e8b90b51c7a5360686d9c0afCAS |
[8] J. Szépvölgyi, Z. Károly, Key Eng. Mater. 2004, 264–268, 101.
| Crossref | GoogleScholarGoogle Scholar |
[9] Y. D. Xia, R. Mokaya, J. Mater. Chem. 2005, 15, 3126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFWnur4%3D&md5=3a04440949dc7bfbc0f3a4dd2d07be61CAS |
[10] J. L. Yang, X. X. Xu, J. M. Wu, X. H. Wang, Z. G. Su, C. H. Li, J. Eur. Ceram. Soc. 2015, 35, 2593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVams78%3D&md5=0aa22fe83747b13d18fb30b9269f5567CAS |
[11] B. V. Gangar, K. Nagarajan, R. Venkata Krishnan, A. B. Pandita, Trans. Indian Ceram. Soc. 2012, 71, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWgsr3L&md5=f1c489939308a05542c578da672c0353CAS |
[12] J. Wang, J. Li, Y. Wang, G. Luo, Chem. Eng. J. 2014, 236, 293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVSlsrnE&md5=53cc703a52180b747c9ec5a71e26789bCAS |
[13] J. Fang, X. Huang, X. Ouyang, X. Wang, Chem. Eng. J. 2015, 270, 309.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXivVCntLY%3D&md5=36c0084f8d9b9828763edb2b55bfbe60CAS |
[14] H. Wang, F. Wang, Q. Liao, X. Li, Ceram. Int. 2015, 41, 4959.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFOqs7nJ&md5=885903cdf1e4ff75db842ea6aa37e1bcCAS |
[15] T. Kato, H. Ushijima, M. Katsumata, T. Hyodo, Y. Shimizu, M. Egashira, J. Mater. Sci. 2002, 37, 2317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVelt7s%3D&md5=7d3f1b7b07655d6e23ffc406b2ee241eCAS |
[16] P. Gupta, G. Tenhundfeld, E. O. Daigle, D. Ryabkov, Surf. Coat. Technol. 2007, 201, 8746.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlKhtrg%3D&md5=58a291870c6dcc7d686db6e4efb47829CAS |
[17] E. I. Meletis, X. Nie, F. L. Wang, J. C. Jiang, Surf. Coat. Technol. 2002, 150, 246.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlCrs7g%3D&md5=2936a8ff10e8ab8d48f91e688e74ef6bCAS |
[18] T. R. N. Kutty, V. Jayaraman, G. Periaswami, Mater. Res. Bull. 1996, 31, 1159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVCntrY%3D&md5=ef584cedb02e136a10745592edd67a71CAS |
[19] H. L. Yu, Q. L. Liao, L. B. Liu, J. of Synth. Cryst. 2013, 42, 2632.[In Chinese].
| 1:CAS:528:DC%2BC2MXovVKgsrc%3D&md5=17cbe1a6c4f720ad5a2cb620b59607c9CAS |