Rheopectic Gel Formation of Stimuli-Responsive Ionic Liquid/Water Mixtures
Yukinobu Fukaya A , Takuro Nakano A and Hiroyuki Ohno A B CA Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
B Functional Ionic Liquid Laboratories, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
C Corresponding author. Email: ohnoh@cc.tuat.ac.jp
Australian Journal of Chemistry 70(1) 74-78 https://doi.org/10.1071/CH16228
Submitted: 9 April 2016 Accepted: 30 May 2016 Published: 27 June 2016
Abstract
A new class of hydrophobic and polar ionic liquids was prepared by coupling hydrophobic tetraoctylphosphonium cation and polar phosphonate-derived anions. Mixtures of these ionic liquids and water showed lower critical solution temperature-type phase behaviour. Furthermore, these mixtures displayed thermoreversible, however, non-linear viscosity change despite their large content of water. The abrupt increase in the viscosity was explained by the occurrence of rheopectic gelation of the ionic liquid/water mixtures by external stimuli such as shear stress.
References
[1] (a) R. D. Rogers, K. R. Seddon, Science 2003, 302, 792.| Crossref | GoogleScholarGoogle Scholar | 14593156PubMed |
(b) P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis 2008 (Wiley-VCH: Weinheim).
(c) M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) K. R. Seddon, A. Stark, M. J. Torres, Pure Appl. Chem. 2000, 72, 2275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVCgtb4%3D&md5=ff98358ed76bc3ca4b8fbeafb484a535CAS |
(b) K. Fujita, D. R. MacFarlane, M. Forsyth, Chem. Commun. 2005, 4804.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. A. Fletcher, S. Pandey, J. Phys. Chem. B 2003, 107, 13532.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Kohno, H. Arai, S. Saita, H. Ohno, Aust. J. Chem. 2011, 64, 1560.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) J. E. L. Dullius, P. A. Z. Suarez, S. Einloft, R. F. de Souza, J. Dupont, Organometallics 1998, 17, 815.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXovFOnsw%3D%3D&md5=01ddf7ab0be5386d264c584202d48318CAS |
(b) K. Fukumoto, H. Ohno, Angew. Chem., Int. Ed. 2007, 46, 1852.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Fukaya, K. Sekikawa, K. Murata, N. Nakamura, H. Ohno, Chem. Commun. 2007, 3089.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Saita, Y. Kohno, N. Nakamura, H. Ohno, Chem. Commun. 2013, 49, 8988.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) Y. Deguchi, Y. Kohno, H. Ohno, Aust. J. Chem. 2014, 67, 1666.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVyjtb3O&md5=93e84fe9a8137bdda991b15c8a3db7e4CAS |
(b) Y. Kohno, Y. Deguchi, N. Inoue, H. Ohno, Aust. J. Chem. 2013, 66, 1393.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Deguchi, Y. Kohno, H. Ohno, Chem. Commun. 2015, 51, 9287.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Kohno, H. Ohno, Aust. J. Chem. 2012, 65, 91.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. Men, X.-H. Li, M. Antonietti, J. Yuan, Polym. Chem. 2012, 3, 871.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) Y. Fukaya, H. Ohno, Phys. Chem. Chem. Phys. 2013, 15, 14941.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlSitrvJ&md5=6abc1a063e303d9bd0f2369a5f0adbaeCAS | 23925387PubMed |
(b) S. Saita, Y. Mieno, Y. Kohno, H. Ohno, Chem. Commun. 2014, 50, 15450.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) J. C. Ribot, C. Guerrero-Sanchez, R. Hoogenboom, U. S. Schubert, Chem. Commun. 2010, 46, 6971.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWltrzE&md5=09591962597f48897c2d8e54fdbe00bcCAS |
(b) J. C. Ribot, C. Guerrero-Sanchez, R. Hoogenboom, U. S. Schubert, J. Mater. Chem. 2010, 20, 8279.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. C. Ribot, C. Guerrero-Sanchez, T. L. Greaves, D. F. Kennedy, R. Hoogenboom, U. S. Schubert, Soft Matter 2012, 8, 1025.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) Y. Fukaya, H. Ohno, Phys. Chem. Chem. Phys. 2013, 15, 4066.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislyns70%3D&md5=3293d4f21fded3f30768c2bc6d3488e8CAS | 23403716PubMed |
(b) M. Abe, K. Kuroda, D. Sato, H. Kunimura, H. Ohno, Phys. Chem. Chem. Phys. 2015, 17, 32276.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) J. Kagimoto, K. Fukumoto, H. Ohno, Chem. Commun. 2006, 2254.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xksl2hsbs%3D&md5=6512f57b93d2b0c4014e6fd4708e93cbCAS |
(b) M. Abe, Y. Fukaya, H. Ohno, Green Chem. 2010, 12, 1274.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) M. J. Kamlet, R. W. Taft, J. Am. Chem. Soc. 1976, 98, 377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XovFeqtA%3D%3D&md5=f47d8eb957729edf1c0499b0fe78d9c9CAS |
(b) M. J. Kamlet, J. L. Abboud, R. W. Taft, J. Am. Chem. Soc. 1977, 99, 6027.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. W. Taft, M. J. Kamlet, J. Am. Chem. Soc. 1976, 98, 2886.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. Yokoyama, R. W. Taft, M. J. Kamlet, J. Am. Chem. Soc. 1976, 98, 3233.
| Crossref | GoogleScholarGoogle Scholar |
(e) L. Crowhurst, P. R. Mawdsley, J. M. Perez-Arlandis, P. A. Salter, T. Welton, Phys. Chem. Chem. Phys. 2003, 5, 2790.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. N. Baker, A. Baker Gary, F. V. Bright, Green Chem. 2002, 4, 165.
| Crossref | GoogleScholarGoogle Scholar |
[10] Y. Kohno, H. Ohno, Chem. Commun. 2012, 48, 7119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFWmur8%3D&md5=7c21b8fa996f885a40d158ff88c7881fCAS |
[11] G. C. Kalur, B. D. Frounfelker, B. H. Cipriano, A. I. Norman, R. Raghavan, Langmuir 2005, 21, 10998.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKlsbfN&md5=c2b6830c3c56281d8f844fbe811d19f0CAS | 16285764PubMed |
[12] S. Ueda, J. Kagimoto, T. Ichikawa, T. Kato, H. Ohno, Adv. Mater. 2011, 23, 3071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsValurk%3D&md5=84d123f0cdecf2f213e8d1a60f7dcf02CAS | 21608051PubMed |