Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Importance of the Pauli Exchange-Type Repulsions and Hyperconjugative Interactions on the Conformational Properties of Halocarbonyl Isocyanates and Halocarbonyl Azides

Athena Behrouz A and Davood Nori-Shargh A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, College of Science, Arak Branch, Islamic Azad University, Arak, Iran.

B Corresponding author. Email: D-norishargh@iau-arak.ac.ir

Australian Journal of Chemistry 70(1) 61-73 https://doi.org/10.1071/CH16227
Submitted: 9 April 2016  Accepted: 18 May 2016   Published: 1 July 2016

Abstract

To gain further insight into the origin of the anomeric relationships in planar open-chain (acyclic) compounds, we examined the effects of the hyperconjugative generalized anomeric effect (HC-GAE), Pauli exchange-type repulsion (PETR), the electrostatic model associated with the dipole–dipole interactions (EM-DDI), and the attractive electrostatic interactions (AEI) between the natural atomic charges (NACs) on the conformational properties of halocarbonyl isocyanates [halogen = F (1), Cl (2), Br (3)] and halocarbonyl azides [halogen = F (4), Cl (5), Br (6)] by means of G3MP2, CCSD, MP2, and B3LYP methods with the 6–311+G** basis set on all atoms and natural bond orbital interpretation. Importantly, the deletions of the through bond LPN3→σ*C2–X6 hyperconjugative interactions from the Fock matrices of the cis- and trans-conformations lead to the increase of the cis-conformations’ stability compared with their corresponding trans-conformations going from compound 1 to 3 and from compound 4 to 6, revealing the determining effects on the conformational preferences in compounds 13 and 46. Essentially, the effects of the through space (LPN3→σ*C4–O5 and LPNα→π*Nβ=Nω, respectively) hyperconjugative interactions on the conformational preferences in the isocyanate (13) and azide compounds (46) are negligible. The EM-DDI fails to account for the conformational preferences in compounds 2, 3, 5, and 6. Therefore, the generalized anomeric relationships in compounds 13 and 46 result from the cooperative effects of the HC-GAE and PETR. The variations of the AEIs revealed their opposite effects on the trend observed for the conformational preferences in compounds 13 and 46. Contrary to the usual assumption, the much larger barrier heights of the rotation around the C2–N3 bonds in the azide compounds (46) compared with those in the isocyanate compounds (13) result from the exchange components and have no hyperconjugative origin.


References

[1]  J. Kirby, The Anomeric Effect and Related Stereoelectronic Effects at Oxygen 1983 (Springer Verlag: New York, NY).

[2]  P. Deslongchamps, Stereoelectronic Effects in Organic Chemistry 1983 (Wiley: New York, NY).

[3]  E. Juaristi, G. Cuevas, The Anomeric Effect 1995 (CRC Press Inc.: Boca Raton, FL).

[4]  C. J. Cramer, J. Org. Chem. 1992, 57, 7034.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsVKqtb0%3D&md5=507512022dcecea23185e91c0c522708CAS |

[5]  C. L. Perrin, K. B. Armstrong, M. A. Fabian, J. Am. Chem. Soc. 1994, 116, 715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs1ejs7k%3D&md5=4d58284312e920a82507564e6a7d84faCAS |

[6]  A. Lesarri, A. Vega-Toribio, R. D. Suenram, D. J. Brugh, D. Nori-Shargh, J. E. Boggs, J.-U. Grabow, Phys. Chem. Chem. Phys. 2011, 13, 6610.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFKktLw%3D&md5=59cd96c582080ad0c624392e7fac2dfbCAS | 21384026PubMed |

[7]  A. Vila, R. A. Mosquera, J. Comput. Chem. 2007, 28, 1516.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslSgs7k%3D&md5=27ee84d7396de811a96cea01f61b4acbCAS | 17330885PubMed |

[8]  P. A. Petillo, L. E. Lerner, in The Anomeric Effect and Associated Steroelectronic Effects, ACS Symposium Series No. 539 (Ed. G. R. J. Thacher) 1993, pp. 156–175 (American Chemical Society: Washington, DC).

[9]  E. Juaristi, R. Notario, J. Org. Chem. 2016, 81, 1192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XptlGgsQ%3D%3D&md5=07aedd37de99671bc0b10131b6be7541CAS | 26771442PubMed |

[10]  J.-P. Praly, R. U. Lemieux, Can. J. Chem. 1987, 65, 213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitFWhtQ%3D%3D&md5=270737f575df6c6a2243e7de95c9721dCAS |

[11]  D. Nori-Shargh, S. N. Mousavi, H. Kayi, J. Mol. Model. 2014, 20, 2249.
         | Crossref | GoogleScholarGoogle Scholar | 24817665PubMed |

[12]  M. P. Freitas, Org. Biomol. Chem. 2013, 11, 2885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltl2is7o%3D&md5=1c9b39827db19174f254ce28bf468584CAS | 23515623PubMed |

[13]  C. Wang, Z. Chen, W. Wu, Y. Mo, Chem. – Eur. J. 2013, 19, 1436.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2ltLnI&md5=0e911aae5924a17acf37fcbfa61e63c9CAS | 23225166PubMed |

[14]  Y. Huang, A.-G. Zhong, Q. Yang, S. B. Liu, J. Chem. Phys. 2011, 134, 084103.
         | Crossref | GoogleScholarGoogle Scholar | 21361523PubMed |

[15]  G. F. Bauerfeldt, T. M. Cardozo, M. S. Pereira, C. O. da Silva, Org. Biomol. Chem. 2013, 11, 299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSksbvE&md5=b0ad6a899809d007e5c575b37b9b2af2CAS | 23172415PubMed |

[16]  N. Hasanzadeh, D. Nori-Shargh, M. Farzipour, B. Ahmadi, Org. Biomol. Chem. 2015, 13, 6965.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotVCit74%3D&md5=ffbb2c568d39e74d20659d501bbfe306CAS | 26022618PubMed |

[17]  J. R. Durig, G. A. Guirgis, K. A. Krutules, H. Phan, H. D. Stidham, J. Raman Spectrosc. 1994, 25, 221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFKhu70%3D&md5=d02fc737d21721b93cfa070422671473CAS |

[18]  H.-G. Mack, H. Oberhammer, C. O. Della Védova, J. Mol. Struct. THEOCHEM 1989, 200, 277.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  J. F. Sullivan, S. K. Nandy, M. J. Lee, J. R. Durig, J. Mol. Struct. 1992, 266, 271.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitFeru70%3D&md5=febc6ec86b9ad3c142a67feb815aeba9CAS |

[20]  V. Jonas, G. Frenking, Chem. Phys. Lett. 1991, 177, 175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvVCmsb8%3D&md5=a0729a30081d9984c4bb29d543f1e1adCAS |

[21]  M. T. Nguyen, M. R. Hajnal, L. G. Vanquickenborne, J. Mol. Struct. THEOCHEM 1991, 231, 185.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  D. Klapstein, W. M. Nau, J. Mol. Struct. 1994, 317, 59.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtlelsLo%3D&md5=8a337de4010f11722be987914eebf9b9CAS |

[23]  J. R. Durig, G. A. Guirgis, K. A. Krutules, J. Mol. Struct. 1995, 354, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvF2ksrs%3D&md5=3269425a1945c2090e7c137f7f5409caCAS |

[24]  S. N. Mousavi, D. Nori-Shargh, H. Yahyaei, K. M. Frahani, Can. J. Chem. 2012, 90, 333.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XoslGqtbo%3D&md5=fdf5a0cd56798c2682dd7b1d6fc5b98cCAS |

[25]  H.-G. Mack, C. O. Della Védovab, H. Willner, J. Mol. Struct. 1993, 291, 197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvFCktrg%3D&md5=039a747e07aa5b61402ae91cb841ab3aCAS |

[26]  A. A. Al-Saadi, H. M. Badawi, J. Mol. Struct. THEOCHEM 2002, 582, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1KiurY%3D&md5=d13497a29ff048dc0711b31ef780afefCAS |

[27]  H. M. Badawi, W. Förner, K. S. Al-Ghamd, J. Mol. Model. 2003, 9, 124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFSmur4%3D&md5=ff4a2aa6f184014caed5c3885cff5020CAS | 12687434PubMed |

[28]  L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, J. A. Pople, J. Chem. Phys. 1999, 110, 4703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlektb4%3D&md5=fde578637837919df11e4ec56c781a29CAS |

[29]  J. Cížek, in Advances in Chemical Physics (Ed. P. C. Hariharan) 1969, Vol. 14, pp. 35–89 (Wiley Interscience: New York, NY).

[30]  G. D. Purvis, R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtFSgtLY%3D&md5=cf1d6c68d4294f0340fac1a50f00161dCAS |

[31]  G. E. Scuseria, C. L. Janssen, H. F. Schaefer, J. Chem. Phys. 1988, 89, 7382.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXht1WlsLk%3D&md5=d217ac88b4c93ec3ee0907a542939623CAS |

[32]  G. E. Scuseria, H. F. Schaefer, J. Chem. Phys. 1989, 90, 3700.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktFalsbg%3D&md5=9374f787390ebdbec83578e60aae2885CAS |

[33]  M. Urban, J. Noga, S. J. Cole, R. J. Bartlett, J. Chem. Phys. 1985, 83, 4041.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtVSqu70%3D&md5=8e2b88dbc5f81880f1ff6bb6a3984e9fCAS |

[34]  C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  D. Cremer, in Encyclopedia of Computational Chemistry (Eds P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollma, H. F. Schaefer III, P. R. Schreiner) 1998, pp. 1706–1735 (John Wiley: Chichester).

[36]  D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=f3f6bac3f3f06397785c39408dfcd392CAS |

[37]  R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXpvFyitA%3D%3D&md5=93091f1b4b2e0448c2ae1f3b020a15c8CAS |

[38]  A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksFCnu7c%3D&md5=896ee1a4d63963448d7181321b2e923cCAS |

[39]  J.-P. Blaudeau, M. P. McGrath, L. A. Curtiss, L. Radom, J. Chem. Phys. 1997, 107, 5016.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVWrtbo%3D&md5=674fb277d380e6ed13f1c415d49da9f2CAS |

[40]  L. A. Curtiss, M. P. McGrath, J.-P. Blandeau, N. E. Davis, R. C. Binning, L. Radom, J. Chem. Phys. 1995, 103, 6104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosFGhs78%3D&md5=a661bebc3a97045a0cddb827acd89328CAS |

[41]  M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Su, S. J. Nguyen, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsFaqtQ%3D%3D&md5=e3532055f2c3f4e19509fba5111418d0CAS |

[42]  M. S. Gordon, M. W. Schmidt, in Theory and Applications of Computational Chemistry: The First 40 Years (Eds C. E. Dykstra, G. Frenking, K. S. Lim, G. E. Scusaria) 2005, pp. 1167–1185 (Elsevier: Amsterdam).

[43]  E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, NBO Version 5.G. 2004 (Theoretical Chemistry Institute, University of Wisconsin: Madison, WI).

[44]  N. D. Epiotis, R. L. Yates, R. J. Larson, C. R. Kirmayer, F. Bernardi, J. Am. Chem. Soc. 1977, 99, 8379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXitF2rsA%3D%3D&md5=54d16387db83d2d6e1c10c10a8799f76CAS |

[45]  M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry 1969 (McGraw-Hill: New York, NY).

[46]  W. T. Borden, Modern Molecular Orbital Theory for Organic Chemists 1975 (Prentice-Hall: Englewood Cliffs, NJ).

[47]  M. Wolfsberg, L. Helmholz, J. Chem. Phys. 1952, 20, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXhtFCgtw%3D%3D&md5=3effc353e727a8ddcfaa37884893d564CAS |

[48]  D. D. Radtke, R. F. Fenske, J. Am. Chem. Soc. 1967, 89, 2292.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXks1Okurg%3D&md5=e7e2ed31a57a5f8d80feb20546b49a07CAS |

[49]  F. Weinhold, in Encyclopedia of Computational Chemistry (Eds P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, P. R. Schreiner) 1998, pp. 1792–1811 (Wiley: Chichester).

[50]  L. Radom, W. J. Hehre, J. A. Pople, J. Am. Chem. Soc. 1972, 94, 2371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhsFeju7w%3D&md5=de392d9a1986caca66d274c9eed00a4dCAS |

[51]  J. K. Badenhoop, F. Weinhold, J. Chem. Phys. 1997, 107, 5406.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtlWisL8%3D&md5=365286e9462af010beb3db8a77ef1aa8CAS |

[52]  J. K. Badenhoop, F. Weinhold, J. Chem. Phys. 1997, 107, 5422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtlWisLw%3D&md5=937aaf10de5b063a71cc88c7201b187dCAS |

[53]  J. K. Badenhoop, F. Weinhold, Int. J. Quantum Chem. 1999, 72, 269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvV2qsb4%3D&md5=a0991b19866ab3c252899ee769167230CAS |

[54]  V. F. Weisskopf, Science 1975, 187, 605.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvjvV2hsQ%3D%3D&md5=be9148e4c3f7df12020a19aabd900a66CAS | 17810052PubMed |

[55]  P. A. Christiansen, W. E. Palke, J. Chem. Phys. 1977, 67, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkvFWjtL4%3D&md5=2e7c55c15c8d486ce4130989afa06138CAS |