Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Organometallic Complexes for Non-Linear Optics. 59. Syntheses and Optical Properties of Some Octupolar (N-Heterocyclic Carbene)gold Complexes

Gang Liu A , Cristóbal Quintana B , Genmiao Wang B , Mahesh S. Kodikara B , Jun Du B , Rob Stranger B , Chi Zhang A , Marie P. Cifuentes A B and Mark G. Humphrey A B C
+ Author Affiliations
- Author Affiliations

A School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, China.

B Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.

C Corresponding author. Email: mark.humphrey@jiangnan.edu.cn; mark.humphrey@anu.edu.au

Australian Journal of Chemistry 70(1) 79-89 https://doi.org/10.1071/CH16321
Submitted: 25 May 2016  Accepted: 30 May 2016   Published: 27 June 2016

Abstract

The syntheses of octupolar alkynes 1,3,5-{4-(4-HC≡CC6H4-1-C≡C)-3,5-Et2C6H2-1-C≡C}3C6H3 (4) and 1,3,5-{4-(4-HC≡CC6H4-1-C≡C-4-C6H4-1-C≡C)-3,5-Et2C6H2-1-C≡C}3C6H3 (6), diphenylamino-substituted 1,3,5-(4-Ph2NC6H4-1-C≡C)3C6H3 (7), 1,3,5-(4-Ph2NC6H4-1-C≡C-4-C6H4-1-C≡C)3C6H3 (8), 1,3,5-{4-(4-Ph2NC6H4-1-C≡C-4-C6H4-1-C≡C)-3,5-Et2C6H2-1-C≡C}3C6H3 (9), and 1,3,5-{4-(4-Ph2NC6H4-1-C≡C-4-C6H4-1-C≡C-4-C6H4-1-C≡C)-3,5-Et2C6H2-1-C≡C}3C6H3 (10), and (N-heterocyclic carbene)gold-appended 1,3,5-{[(NHC-iPr)Au]C≡C}3C6H3 (11), 1,3,5-{[(NHC-iPr)Au]C≡C-4-C6H4-1-C≡C}3C6H3 (12), 1,3,5-{4-([(NHC-iPr)Au]C≡C-4-C6H4-1-C≡C)-3,5-Et2C6H2-1-C≡C}3C6H3 (13), and 1,3,5-{4-([(NHC-iPr)Au]C≡C-4-C6H4-1-C≡C-4-C6H4-1-C≡C)-3,5-Et2C6H2-1-C≡C}3C6H3 (14) [NHC-iPr = κC-cyclo-CN(2,6-C6H3iPr2)CH=CHN(2,6-C6H3iPr2)] are reported. The low-energy bands in the linear optical absorption spectra of all three sets of compounds are red-shifted and increase in intensity upon π-delocalizable ‘arm’ lengthening. The diphenylamino- and (NHC-iPr)gold-terminated compounds do not exhibit measurable second-harmonic generation as assessed by hyper-Rayleigh scattering at 1064 nm using nanosecond pulses. Computational studies have been employed to rationalize the optical properties of the new compounds. Calculations on 710 reveal that the lowest-energy transitions with large oscillator strengths are predominantly [Ph2NC6H4] (π) → [arms + core] (π*) in character, whereas calculations on 1114 suggest that the low-energy transitions relate to the transfer of electron density from the Au-alkynyl core group to the terminal NHC groups.


References

[1]  M. Concepción, Modern Supramolecular Gold Chemistry: Gold-Metal Interactions and Applications 2008 (Wiley:, Weinheim).

[2]  H. S. Nalwa, Appl. Organomet. Chem. 1991, 5, 349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XotlOisw%3D%3D&md5=5b8752a20f65ab2e7588995566bee6ddCAS |

[3]  N. J. Long, Angew. Chem., Int. Ed. Engl. 1995, 34, 21.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt12mu70%3D&md5=6108bdbbce5700bffc7b16f64602e408CAS |

[4]  I. R. Whittall, A. M. McDonagh, M. G. Humphrey, M. Samoc, Adv. Organomet. Chem. 1998, 42, 291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12jsbs%3D&md5=ddd16e7d69d765027aeb87cd5fe4a72dCAS |

[5]  I. R. Whittall, A. M. McDonagh, M. G. Humphrey, M. Samoc, Adv. Organomet. Chem. 1999, 43, 349.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  S. Di Bella, Chem. Soc. Rev. 2001, 30, 355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFCgtbk%3D&md5=2508ae39f464ff99f168bba5b5c57268CAS |

[7]  K. A. Green, M. P. Cifuentes, M. Samoc, M. G. Humphrey, Coord. Chem. Rev. 2011, 255, 2530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2rsLbK&md5=ceff3dd12fb48b1754cf76212a00b133CAS |

[8]  D. R. Kanis, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 1992, 114, 10338.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXotFWjsQ%3D%3D&md5=e17f01d200611285e87470160b501e30CAS |

[9]  A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, Organometallics 1999, 18, 5195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1Sns74%3D&md5=d0a6a761517f8709b3818324b791159eCAS |

[10]  I. R. Whittall, M. G. Humphrey, S. Houbrechts, A. Persoons, D. C. R. Hockless, Organometallics 1996, 15, 5738.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xnt1Wktro%3D&md5=5199f057d06c4c4e3b5064e4066ed260CAS |

[11]  R. H. Naulty, M. P. Cifuentes, M. G. Humphrey, S. Houbrechts, C. Boutton, A. Persoons, G. A. Heath, D. C. R. Hockless, B. Luther-Davies, M. Samoc, J. Chem. Soc., Dalton Trans. 1997, 4167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntlOmu7c%3D&md5=5b01142476585ee7dbc8e223090a427aCAS |

[12]  I. R. Whittall, M. G. Humphrey, S. Houbrechts, J. Maes, A. Persoons, S. Schmid, D. C. R. Hockless, J. Organomet. Chem. 1997, 544, 277.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  I. R. Whittall, M. G. Humphrey, M. Samoc, B. Luther-Davies, D. C. R. Hockless, J. Organomet. Chem. 1997, 544, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsV2qsbc%3D&md5=54abafa8eaeb037b189c49793178ccaeCAS |

[14]  J. Vicente, M.-T. Chicote, P. González-Herrero, P. G. Jones, M. G. Humphrey, M. P. Cifuentes, M. Samoc, B. Luther-Davies, Inorg. Chem. 1999, 38, 5018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlKqtrk%3D&md5=50945f0fcb6c5baa27535fadcc852736CAS | 11671245PubMed |

[15]  A. M. McDonagh, N. T. Lucas, M. P. Cifuentes, M. G. Humphrey, S. Houbrechts, A. Persoons, J. Organomet. Chem. 2000, 605, 184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtValsro%3D&md5=06a6238d540f141526798a835debb27eCAS |

[16]  M. G. Humphrey, Gold Bull. 2000, 33, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFKhuw%3D%3D&md5=ce0860d6cdaf4851b997566d38d37983CAS |

[17]  J. Vicente, M. T. Chicote, M. D. Abrisqueta, M. C. Ramîrez de Arellano, P. G. Jones, M. G. Humphrey, M. P. Cifuentes, M. Samoc, B. Luther-Davies, Organometallics 2000, 19, 2968.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktlOru7k%3D&md5=28044dc22f23c6ad1e34c51d7b246aefCAS |

[18]  S. Hurst, N. T. Lucas, M. P. Cifuentes, M. G. Humphrey, M. Samoc, B. Luther-Davies, I. Asselberghs, R. Van Boxel, A. Persoons, J. Organomet. Chem. 2001, 633, 114.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslGjt74%3D&md5=7266c3dce23b808c8e16f0ca95a4279dCAS |

[19]  S. K. Hurst, N. T. Lucas, M. G. Humphrey, I. Asselberghs, R. Van Boxel, A. Persoons, Aust. J. Chem. 2001, 54, 447.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFagug%3D%3D&md5=26815c24ba406b584e7de5eacef17300CAS |

[20]  S. K. Hurst, M. P. Cifuentes, A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, I. Asselberghs, A. Persoons, J. Organomet. Chem. 2002, 642, 259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhslKr&md5=50f81a5d8fe0cfcbec727a6e7b1acb77CAS |

[21]  S. K. Hurst, M. G. Humphrey, J. P. Morrall, M. P. Cifuentes, A. Samoc, B. Luther-Davies, A. C. Willis, J. Organomet. Chem. 2003, 670, 56.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvV2ntb8%3D&md5=ac9783a8e4433b5bdbd11338bd3e3020CAS |

[22]  S. K. Hurst, N. T. Lucas, M. G. Humphrey, T. Isoshima, K. Wostyn, I. Asselberghs, K. Clays, A. Persoons, M. Samoc, B. Luther-Davies, Inorg. Chim. Acta 2003, 350, 62.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVeitrY%3D&md5=4ca8b06acd5da0816e79e2c3a126d78eCAS |

[23]  A. Barlow, B. Babgi, M. Samoc, T. C. Corkery, S. van Cleuvenbergen, I. Asselberghs, K. Clays, M. P. Cifuentes, M. G. Humphrey, Aust. J. Chem. 2012, 65, 834.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCisbbL&md5=94443d8253406884fc2b71a0302ce366CAS |

[24]  S. Hurst, M. P. Cifuentes, J. P. L. Morrall, N. T. Lucas, I. R. Whittall, M. G. Humphrey, I. Asselberghs, A. Persoons, M. Samoc, B. Luther-Davies, A. C. Willis, Organometallics 2001, 20, 4664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVKiu7o%3D&md5=f05d22d013e8a7e94de0db5a51b02108CAS |

[25]  A. M. McDonagh, M. P. Cifuentes, M. G. Humphrey, S. Houbrechts, J. Maes, A. Persoons, M. Samoc, B. Luther-Davies, J. Organomet. Chem. 2000, 610, 71.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFGksrc%3D&md5=7fbf5d5e8566b672747e7126b9dc603bCAS |

[26]  M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCqu7fO&md5=990ffa1c6fdd4c080f6072558d2bad39CAS | 24965649PubMed |

[27]  S. Díez-González, S. P. Nolan, Coord. Chem. Rev. 2007, 251, 874.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  S. P. Nolan (Ed.), N-Heterocyclic Carbenes in Synthesis 2006 (Wiley-VCH: Weinheim).

[29]  J. A. Garg, O. Blacque, J. Heier, K. Venkatesan, Eur. J. Inorg. Chem. 2012, 1750.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFygsr0%3D&md5=05232bab16c4660a400f1dd84335d096CAS |

[30]  G. C. Fortman, A. Poater, J. W. Levell, S. Gaillard, A. M. Z. Slawin, I. D. W. Samuel, L. Cavallo, S. P. Nolan, Dalton Trans. 2010, 39, 10382.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGmsrbE&md5=c2dfc83732076c1f72b5efb81505f493CAS | 20922211PubMed |

[31]  N. Marion, S. Diez-Gonzalez, S. P. Nolan, Angew. Chem., Int. Ed. 2007, 46, 2988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVSmt7c%3D&md5=d6dea9bb14463694e6d3afa9977f446eCAS |

[32]  E. A. B. Kantchev, C. J. O’Brien, M. G. Organ, Angew. Chem., Int. Ed. 2007, 46, 2768.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksleitb4%3D&md5=06a6a95bfa5b3307c5379451b6c5a12bCAS |

[33]  J. A. Mata, M. Poyatos, E. Peris, Coord. Chem. Rev. 2007, 251, 841.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFOjs7Y%3D&md5=49ff84bddad46479a1507fd6f0ae967dCAS |

[34]  N. Marion, S. P. Nolan, Acc. Chem. Res. 2008, 41, 1440.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2hs7zN&md5=17b194c2f41ca460fe32ba5e8f72730fCAS | 18774825PubMed |

[35]  N. Marion, S. P. Nolan, Chem. Soc. Rev. 2008, 37, 1776.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOitb3I&md5=26b56276c371d1908a3e9bf948a5f2f1CAS | 18762827PubMed |

[36]  G. C. Fortman, S. P. Nolan, Chem. Soc. Rev. 2011, 40, 5151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2jtbvO&md5=5a1e9cd2e1f95108cd18efe658fabff8CAS | 21731956PubMed |

[37]  A. Grossmann, D. Enders, Angew. Chem., Int. Ed. 2012, 51, 314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeqtLrI&md5=80e663355127c4f973a60c55e8924ba3CAS |

[38]  T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, R. J. Holmes, S. R. Forrest, Inorg. Chem. 2005, 44, 7992.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVegt7nO&md5=ac99562459961e7b145068fa232b6947CAS | 16241149PubMed |

[39]  R. Visbal, M. Concepcion Gimeno, Chem. Soc. Rev. 2014, 43, 3551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFGhtrk%3D&md5=12aed0b1663463b0e767b5e1d1c80471CAS | 24604135PubMed |

[40]  J. L. Hickey, R. A. Ruhayel, P. J. Barnard, M. V. Baker, S. J. Berners-Price, A. Filipovska, J. Am. Chem. Soc. 2008, 130, 12570.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCmsrvK&md5=e095217888059255bf666f8dfa51fb88CAS | 18729360PubMed |

[41]  K. M. Hindi, M. J. Panzner, C. A. Tessier, C. L. Cannon, W. J. Youngs, Chem. Rev. 2009, 109, 3859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKmsLg%3D&md5=460acfb73ba2d0452566a30e0c53713bCAS | 19580262PubMed |

[42]  M.-L. Teyssot, A.-S. Jarrousse, M. Manin, A. Chevry, S. Roche, F. Norre, C. Beaudoin, L. Morel, D. Boyer, R. Mahiou, A. Gautier, Dalton Trans. 2009, 6894.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVeksr%2FK&md5=056604eff0bcaa2cc88d6a5b61827665CAS | 20449127PubMed |

[43]  W. Liu, R. Gust, Chem. Soc. Rev. 2013, 42, 755.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKmtbzP&md5=677bcf7ad354cfc8f7f5e155f8ee1dd1CAS | 23147001PubMed |

[44]  L. Oehninger, R. Rubbiani, I. Ott, Dalton Trans. 2013, 42, 3269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitlWlsbk%3D&md5=08afb1b8f485a1403fafaf1c5af765bfCAS | 23223752PubMed |

[45]  M. I. Mangione, R. A. Spanevello, A. Rumbero, D. Heredia, G. Marzari, L. Fernandez, L. Otero, F. Fungo, Macromolecules 2013, 46, 4754.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFWmtbk%3D&md5=23bc14f504a837aedda557d733308288CAS |

[46]  A. M. McDonagh, C. E. Powell, J. P. Morrall, M. P. Cifuentes, M. G. Humphrey, Organometallics 2003, 22, 1402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVaqu7Y%3D&md5=2e8822b5750bcdf95409e8c4319d730bCAS |

[47]  P. de Frémont, N. M. Scott, E. D. Stevens, S. P. Nolan, Organometallics 2005, 24, 2411.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  H. Gao, Y. Li, L. Wang, C. Ji, Y. Wang, W. Tian, X. Yang, L. Yin, Chem. Commun. 2014, 50, 10251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Wlt7%2FO&md5=ba39b5468bd11c2d5d6f4858961b1b62CAS |

[49]  K. Sonogashira, T. Yatake, Y. Tohda, S. Takahashi, N. Hagihara, J. Chem. Soc. Chem. Commun. 1977, 291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXltlGrtr4%3D&md5=69dc9e56324956b781f20961c98fd627CAS |

[50]  A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, S. Houbrechts, T. Wada, H. Sasabe, A. Persoons, J. Am. Chem. Soc. 1999, 121, 1405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvFCgsQ%3D%3D&md5=1f2b34621d4022b95eec0f028f3fed44CAS |

[51]  S. Houbrechts, T. Wada, H. Sasabe, J. P. L. Morrall, I. R. Whittall, A. M. McDonagh, M. G. Humphrey, A. Persoons, Nonlinear Opt. 1999, 22, 165.
         | 1:CAS:528:DC%2BD3cXktFCktbg%3D&md5=df0ce85bb14a318e1a2d425b59c5e7ddCAS |

[52]  M. P. Cifuentes, C. E. Powell, J. P. Morrall, A. M. McDonagh, N. T. Lucas, M. G. Humphrey, M. Samoc, S. Houbrechts, I. Asselberghs, K. Clays, A. Persoons, T. Isoshima, J. Am. Chem. Soc. 2006, 128, 10819.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns1Wqu78%3D&md5=7ef93c372548a9d4f98676eb8767d1f4CAS | 16910677PubMed |

[53]  S. K. Hurst, M. G. Humphrey, T. Isoshima, K. Wostyn, I. Asselberghs, K. Clays, A. Persoons, M. Samoc, B. Luther-Davies, Organometallics 2002, 21, 2024.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFWitLc%3D&md5=8cd735b21cc77ad2cdbd5e8c370ae8e9CAS |

[54]  M. G. Humphrey, T. Schwich, P. J. West, M. P. Cifuentes, M. Samoc, in Comprehensive Inorganic Chemistry II (Eds J. Reedijk, K. Poeppelmeier) 2013, Vol. 8, pp. 781–835 (Elsevier: Oxford, UK).

[55]  M. M. Feliz, J. M. Garriga, R. Llusar, S. Uriel, M. G. Humphrey, N. T. Lucas, M. Samoc, B. Luther-Davies, Inorg. Chem. 2001, 40, 6132.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsFCnsbk%3D&md5=f8a478c6f636623427e303065bc181f6CAS |

[56]  R. L. Sutherland, Handbook of Nonlinear Optics 1996 (Marcel Dekker, New York, NY).