Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Concerted Pathway to the Mechanism of the Anilinolysis of Bis(N,N-diethylamino)phosphinic Chloride in Acetonitrile

Hasi Rani Barai
+ Author Affiliations
- Author Affiliations

Department of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Korea. Email: hrbarai@ynu.ac.kr

Australian Journal of Chemistry 70(1) 101-105 https://doi.org/10.1071/CH16202
Submitted: 29 March 2016  Accepted: 10 June 2016   Published: 4 July 2016

Abstract

The kinetics of the nucleophilic substitution reactions of bis(N,N-diethylamino)phosphinic chloride with substituted anilines (XC6H4NH2) and deuterated anilines (XC6H4ND2) are investigated in MeCN at 65.0°C. The deuterium kinetic isotope effects (DKIEs) are secondary inverse (kH/kD < 1: 0.706–0.947) and the magnitudes of the secondary inverse DKIEs (kH/kD) increase constantly as the nucleophiles are changed from weakly basic to strongly basic anilines. The magnitudes of the selectivity parameters are ρX(H) = –6.34, and βX(H) = 2.24 with substituted anilines and ρX(D) = –6.13 and βX(D) = 2.17 with deuterated anilines. A concerted SN2 mechanism involving predominant backside attack is proposed based on the kH/kD values with substituent X.


References

[1]  N. K. Dey, M. E. Ul Hoque, C. K. Kim, B. S. Lee, H. W. Lee, J. Phys. Org. Chem. 2009, 22, 425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlChsb8%3D&md5=9a52d608d13a0995e5a84e58e28d95daCAS |

[2]  N. K. Dey, H. W. Lee, Bull. Korean Chem. Soc. 2010, 31, 1403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVOgsb4%3D&md5=d83052ec53cf7081bdf85c0f702db23eCAS |

[3]  H. R. Barai, H. W. Lee, Bull. Korean Chem. Soc. 2011, 32, 4361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFKhsQ%3D%3D&md5=beebf1874a38ada147a1d201663aacefCAS |

[4]  A. K. Guha, H. W. Lee, I. Lee, J. Chem. Soc. Perkin Trans. 2 1999, 2, 765.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  H. W. Lee, A. K. Guha, I. Lee, Int. J. Chem. Kinet. 2002, 34, 632.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFegtL0%3D&md5=906fc329716e5817735a421b6278b911CAS |

[6]  M. E. Ul Hoque, S. Dey, A. K. Guha, C. K. Kim, B. S. Lee, H. W. Lee, J. Org. Chem. 2007, 72, 5493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslWgurw%3D&md5=e37646db873089bf0b21a8884b19a22aCAS |

[7]  M. E. Ul Hoque, H. W. Lee, Bull. Korean Chem. Soc. 2007, 28, 936.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M. E. Ul Hoque, N. K. Dey, C. K. Kim, B. S. Lee, H. W. Lee, Org. Biomol. Chem. 2007, 5, 3944.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  N. K. Dey, M. E. Ul Hoque, C. K. Kim, B. S. Lee, H. W. Lee, J. Phys. Org. Chem. 2008, 21, 544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1egtL8%3D&md5=e7faa822792639fa9329802f55a8f403CAS |

[10]  M. E. Ul Hoque, A. K. Guha, C. K. Kim, B. S. Lee, H. W. Lee, Org. Biomol. Chem. 2009, 7, 2919.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVegtLw%3D&md5=3c681cc5a3305a60c496617411d53633CAS | 19582302PubMed |

[11]  K. K. Adhikary, B. J. Lumbiny, S. Dey, H. W. Lee, Bull. Korean Chem. Soc. 2011, 32, 2628.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. E. Ul Hoque, H. W. Lee, Bull. Korean Chem. Soc. 2012, 33, 663.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFOmu7Y%3D&md5=85d3aefe5481014af6dc9c91593e4745CAS |

[13]  A. K. Guha, H. W. Lee, I. Lee, J. Org. Chem. 2000, 65, 12.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVSlt78%3D&md5=4888e9ed340735a27caec7ac14e7e37cCAS | 10813889PubMed |

[14]  M. E. Ul Hoque, N. K. Dey, A. K. Guha, C. K. Kim, B. S. Lee, H. W. Lee, Bull. Korean Chem. Soc. 2007, 28, 1797.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  B. J. Lumbiny, K. K. Adhikary, B. S. Lee, H. W. Lee, Bull. Korean Chem. Soc. 2008, 29, 1769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyrur7L&md5=424995ad95be2375a024d97c7a8e6ee2CAS |

[16]  N. K. Dey, M. E. Ul Hoque, C. K. Kim, H. W. Lee, J. Phys. Org. Chem. 2010, 23, 1022.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGmurjE&md5=34cc9b98d7a24fa7f8df9d9fa7299212CAS |

[17]  M. E. Ul Hoque, S. Dey, C. K. Kim, H. W. Lee, Bull. Korean Chem. Soc. 2011, 32, 1138.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFemt7g%3D&md5=3d4500f02740e51439c4633e8b873bbbCAS |

[18]  H. R. Barai, H. W. Lee, Bull. Korean Chem. Soc. 2012, 33, 270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt12nsLs%3D&md5=e93b45f128041b724015e70a141932a7CAS |

[19]  M. E. Ul Hoque, H. W. Lee, Int. J. Chem. Kinet. 2013, 45, 337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVCisr0%3D&md5=910dffda8cd1be54ee42834650eb656dCAS |

[20]  See Chapter 4 in: Solute-Solvent Interactions (Eds J. F. Coetzee, C. D. Ritchie) 1969 (Marcel Dekker: New York, NY).

[21]  J. F. Coetzee, Prog. Phys. Org. Chem. 1967, 4, 54.

[22]  W. J. Spillane, G. Hogan, P. McGrath, J. King, C. Brack, J. Chem. Soc., Perkin Trans. 2 1996, 2, 2099.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  H. K. Oh, S. Y. Woo, C. H. Shin, Y. S. Park, I. Lee, J. Org. Chem. 1997, 62, 5780.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFyrt7w%3D&md5=e84e9a71e4c2486d1bfca3b70a02aaddCAS |

[24]  C. I. Perrin, R. E. Engler, J. Phys. Chem. 1991, 95, 8431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtFKjur0%3D&md5=c9d75ab86dd3b1371f35e434e8b4abc2CAS |

[25]  C. I. Perrin, B. K. Ohta, J. Kuperman, J. Am. Chem. Soc. 2003, 125, 15008.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFCrtL8%3D&md5=91a37d79dbadb23c58c22dd638ae9ac5CAS |

[26]  C. I. Perrin, B. K. Ohta, J. Kuperman, J. Liberman, M. Erdelyi, J. Am. Chem. Soc. 2005, 127, 9641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVSltLk%3D&md5=8ea08c0a665c1002a3bb4745ac967aefCAS |

[27]  C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1ehsLo%3D&md5=04c650133d19e5098cc09e9f9501b66aCAS |

[28]  See p. 735 in: A. J. Streitwieser, C. H. Heathcock, E. M. Kosower, Introduction to Organic Chemistry (4th edn) 1992 (Macmillan: New York, NY).

[29]  See p. 178 in: T. B. Crumpler, J. H. Yoh, Chemical Computations and Errors 1940 (John Wiley: New York, NY).

[30]  H. R. Barai, H. W. Lee, Bull. Korean Chem. Soc. 2011, 32, 3355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2ntLzJ&md5=0c0816543ce9a1a5a02c6b2f4908a435CAS |

[31]  H. R. Barai, H. W. Lee, Bull. Korean Chem. Soc. 2011, 32, 4185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFGqsw%3D%3D&md5=851344df7b5997d5daf3b9de0384b74bCAS |

[32]  K. K. Adhikary, H. R. Barai, H. W. Lee, Bull. Korean Chem. Soc. 2011, 32, 4304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFKisQ%3D%3D&md5=c46f42b006f469d01e9fee63dae16f1cCAS |

[33]  H. R. Barai, K. K. Adhikary, H. W. Lee, Bull. Korean Chem. Soc. 2012, 33, 1089.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1eisbY%3D&md5=c6781b3728cf71c1a8937b70366b5514CAS |

[34]  H. R. Barai, H. W. Lee, Beilstein J. Org. Chem. 2013, 9, 615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslCntb8%3D&md5=c2524529dcc189771b8f95da830d239aCAS | 23616804PubMed |

[35]  H. R. Barai, H. W. Lee, Bull. Korean Chem. Soc. 2014, 35, 1016.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVekurg%3D&md5=d107fdeb395842fbc95038f396f23521CAS |

[36]  See Chapter 4 in: W. J. Hehre, L. Random, P. V. R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory 1964 (Wiley: New York, NY).

[37]  M. E. Ul Hoque, H. W. Lee, Bull. Korean Chem. Soc. 2011, 32, 1997.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVSksro%3D&md5=a3739e624d04785ebe988738626881bcCAS |

[38]  The aminolyses of P=O (or S) systems generally show the relatively low value of activation enthalpy and large negative value of activation entropy regardless of the mechanism, either concerted (or stepwise with a rate-limiting bond formation) or stepwise with a rate-limiting bond breaking.