Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Experimental and Quantum Mechanical Study of Nucleophilic Substitution Reactions of meta- and para-Substituted Benzyl Bromides with Benzylamine in Methanol: Synergy Between Experiment and Theory

Rachuru Sanjeev A , Ramavath Ravi B , Vandanapu Jagannadham B C and Adam A. Skelton A C
+ Author Affiliations
- Author Affiliations

A Department of Pharmacy, School of Health Science, University of KwaZulu-Natal, Durban 4000, South Africa.

B Department of Chemistry, Osmania University, Hyderabad-500007, India.

C Corresponding authors. Email: jagannadham1950@yahoo.com; Skelton@ukzn.ac.za

Australian Journal of Chemistry 70(1) 90-100 https://doi.org/10.1071/CH16061
Submitted: 2 February 2016  Accepted: 9 June 2016   Published: 18 July 2016

Abstract

This work involves the experimental and theoretical study of the nucleophilic substitution of meta- and para-substituted benzyl bromides with benzylamine. Conductometric rate experiments confirm the applicability of the Hammett linear free-energy relationship to this system. To gain a deep understanding of the physical chemistry at play, a quantum mechanical study of the reaction is also conducted. The quantum mechanical calculations not only reproduce the experimental free energy of activation, but also provide greater insights at the molecular and atomic level. Isolation of the calculated transition state structure and application of the Hammett equation to its electronic, structural, and energetic properties are studied.


References

[1]  L. P. Hammett, Chem. Rev. 1935, 17, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2MXlvFerug%3D%3D&md5=ff46731b27e351f54dbf6d2eef8522b6CAS |

[2]  L. P. Hammett, J. Am. Chem. Soc. 1937, 59, 96.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2sXjtlSqsw%3D%3D&md5=1f1ee63ce2da8238f006edf4ab947f45CAS |

[3]  S. Berski, A. J. Gordon, L. Z. Ciunik, J. Mol. Model. 2015, 21, 57.
         | Crossref | GoogleScholarGoogle Scholar | 25701089PubMed |

[4]  G. K. Ikeda, K. Jang, S. O. Mundle, A. P. Dicks, J. Chem. Educ. 2006, 83, 1341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlOmt7g%3D&md5=d8cc1517f40951faaf56ec3cd1138ef2CAS |

[5]  T. Obata, E. Kobayashi, S. Aoshima, J. Furukawa, Polym. J. 1992, 24, 757.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsFWnurY%3D&md5=1d6f49711ea5e19bd50930191988db0fCAS |

[6]  J. Sinisterra, J. Marinas, A. Llobera, Can. J. Chem. 1983, 61, 230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhsF2qt74%3D&md5=5b9991697d7811bcfd5140a26213dd18CAS |

[7]  A. I. Konovalov, A. Lishchynskyi, V. V. Grushin, J. Am. Chem. Soc. 2014, 136, 13410.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCjt77N&md5=7461766515b6cbda2b656acbb47a0bb6CAS | 25222650PubMed |

[8]  D. Lupp, N. J. Christensen, P. Fristrup, Dalton Trans. 2014, 43, 11093.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSgsb3J&md5=0ec2967ce1ce4949fa78c4c34d675c6eCAS | 24875938PubMed |

[9]  A. R. Bekhradnia, S. Arshadi, S. A. Siadati, Chem. Pap. 2014, 68, 283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKnt7%2FL&md5=7cba19ddd709b032241eb405523d55d3CAS |

[10]  V. Khursan, V. Shamukaev, E. Chainikova, S. Khursan, R. Safiullin, Russ. Chem. Bull. 2013, 62, 2477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1aksbnJ&md5=bdf2b9952d157755264b375c26607c1bCAS |

[11]  J. Mielby, A. Riisager, P. Fristrup, S. Kegnaes, Catal. Today 2013, 203, 211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFCnt7w%3D&md5=e2aeecece87bbf167cfc38652f34981fCAS |

[12]  I. S. Makarov, P. Fristrup, R. Madsen, Chem. – Eur. J. 2012, 18, 15683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFanur3L&md5=81870fe2f1522bf7c168352f47b1ef07CAS | 23070855PubMed |

[13]  E. L. Eliel, Steric Effect in Organic Chemistry 1956 (John Wiley & Sons: New York, NY).

[14]  C. K. Ingold, Structure and Mechanism in Organic Chemistry 1969 (Cornell University Press: London).

[15]  L. P. Hammett, Physical Organic Chemistry 1970 (McGraw-Hill: New York, NY).

[16]  R. Ravi, R. Ravi, Int. J. Chem. Kinet. 2015, 47, 36.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVyqt73L&md5=348f29da4d5cd48828f2c5f116ed71c6CAS |

[17]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision E.01 2009 (Gaussian, Inc.: Wallingford, CT).

[18]  B. Breit, U. Gellrich, T. Li, J. M. Lynam, L. M. Milner, N. E. Pridmore, J. M. Slattery, A. C. Whitwood, Dalton Trans. 2014, 43, 11277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSgsbrI&md5=d107744eb4cce0098869a9ea1f6c6400CAS | 24828970PubMed |

[19]  A. Poater, S. V. C. Vummaleti, E. Pump, L. Cavallo, Dalton Trans. 2014, 43, 11216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSgsbzN&md5=e21d70ffb441ee86ad1ac658165930ffCAS | 24821502PubMed |

[20]  C. E. Kefalidis, A. S. Frey, S. M. Roe, F. G. N. Cloke, L. Maron, Dalton Trans. 2014, 43, 11202.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSgsbrN&md5=71910197dc61e971863b5b7aad07da09CAS | 24769911PubMed |

[21]  G. Occhipinti, V. Koudriavtsev, K. W. Törnroos, V. R. Jensen, Dalton Trans. 2014, 43, 11106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSgsb3O&md5=d64b9953aa4cfe5b8b801df70436241fCAS | 24788021PubMed |

[22]  A. G. Algarra, L. J. Sewell, H. C. Johnson, S. A. Macgregor, A. S. Weller, Dalton Trans. 2014, 43, 11118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSgsbzJ&md5=b242dfaef392d853de63950a3caa00ecCAS | 24296549PubMed |

[23]  B. Rajakumar, E. Arunan, Phys. Chem. Chem. Phys. 2003, 5, 3897.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVagtLo%3D&md5=a4bb2d02b4400ca59c8d9710fe8d78d6CAS |

[24]  G. Lever, D. J. Cole, R. Lonsdale, K. E. Ranaghan, D. J. Wales, A. J. Mulholland, C.-K. Skylaris, M. C. Payne, J. Phys. Chem. Lett. 2014, 5, 3614.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslagtLrE&md5=f68601b4819734cc80923302866154e0CAS | 26278727PubMed |

[25]  L. Simon, J. M. Goodman, Org. Biomol. Chem. 2011, 9, 689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1Grug%3D%3D&md5=fce829feac2e474a0b83518ee8aa43f2CAS | 20976314PubMed |

[26]  J. L. Durant, Chem. Phys. Lett. 1996, 256, 595.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFWhsLc%3D&md5=41930504973d42e31db0f90f5b71d30dCAS |

[27]  I. I. Zakharov, B. F. Minaev, Theor. Exp. Chem. 2011, 47, 93.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVKru7o%3D&md5=c8ad367689e7604b26f2d55717b34325CAS |

[28]  L. J. Rodríguez, J. Fermín, R. Añez, E. Ocando-Mavarez, J. Phys. Org. Chem. 2002, 15, 826.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  S.-L. Chen, R.-Z. Liao, ChemPhysChem 2014, 15, 2321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFagsbY%3D&md5=2e610ba298bf43b48c63ee3c487afeb8CAS | 24683174PubMed |

[30]  S. Schenker, C. Schneider, S. B. Tsogoeva, T. Clark, J. Chem. Theory Comput. 2011, 7, 3586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSlurvN&md5=e96315ed9e0658d15e34d43dba795abfCAS | 26598257PubMed |

[31]  R. D. Enriz, M. E. Morales, H. A. Baldoni, M. L. Freile, An. Asoc. Quím. Argent. 2006, 94, 49.
         | 1:CAS:528:DC%2BD2sXhtFyisbrI&md5=54f6b82457b0afc1a0b8dbfc84d08b29CAS |

[32]  M. Saeys, M.-F. Reyniers, G. B. Marin, V. Van Speybroeck, M. Waroquier, J. Phys. Chem. A 2003, 107, 9147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsl2mtrk%3D&md5=762b84074838f8e80b623c3c0867e198CAS |

[33]  T. Lankau, C.-H. Yu, Phys. Chem. Chem. Phys. 2014, 16, 26658.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvV2gtLbI&md5=23fff4c854e4f223bb93aaa58577a6e7CAS | 25384675PubMed |

[34]  A. Singh, N. Goel, J. Mol. Model. 2014, 20, 1.

[35]  F. P. F. Pineda, J. Ortega-Castro, J. R. Alvarez-Idaboy, J. Frau, B. M. Cabrera, J. Phys. Chem. A 2011, 115, 2359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1art7w%3D&md5=8a6f04c9d72c1888c78cea6d78231080CAS |

[36]  C. A. H. Aguilar, J. Narayanan, N. Singh, P. Thangarasu, J. Phys. Org. Chem. 2014, 27, 440.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGku70%3D&md5=b7cf95d62486101ccc895d6422731a6fCAS |

[37]  L. Wang, R. A. Moss, K. Krogh-Jespersen, Org. Lett. 2013, 15, 2014.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsV2nsL4%3D&md5=7c1ec2d085753418d2026c698a10cb2aCAS | 23566286PubMed |

[38]  H. Tavakol, Comput. Theor. Chem. 2011, 976, 88.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlemtL%2FN&md5=0c1cf58f8aa5583a0d8efef7bdfeee4dCAS |

[39]  G. Durand, F. Choteau, B. Pucci, F. A. Villamena, J. Phys. Chem. A 2008, 112, 12498.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGku7jM&md5=9e058f85af4135d55fc524f1a8fbcb2dCAS | 18998656PubMed |

[40]  H. Lioe, R. A. J. O’Hair, Org. Biomol. Chem. 2005, 3, 3618.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOitbbJ&md5=d5a38a3dfadb5ce4da9be869d0700460CAS | 16211098PubMed |

[41]  J. C. R. Reis, M. A. P. Segurado, J. D. G. De Oliveira, S. Kabilan, K. Suganya, Collect. Czech. Chem. Commun. 2004, 69, 2253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSit70%3D&md5=fef0c5404b298444ffb3046ac435b061CAS |

[42]  I. K. Petrushenko, K. B. Petrushenko, Spectrochim. Acta, Part A 2015, 138, 623.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitV2ms7fJ&md5=750c21d4d225f62782dd169222926e2bCAS |

[43]  J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCksbfO&md5=d19462eb265527d412158ccd19d06c5fCAS | 18989472PubMed |

[44]  A. A. Skelton, N. Aggarwal, J. R. Fried, RSC Adv. 2015, 5, 55033.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVSgs7bM&md5=60947d5e19b77a623192ab254b8578d0CAS |

[45]  A. A. Skelton, J. R. Fried, RSC Adv. 2013, 15, 4341.
         | 1:CAS:528:DC%2BC3sXjtF2gsLo%3D&md5=63afd30f33ad3372bf5d4ce02139cd6eCAS |

[46]  H. Gao, L. Chen, J. Chen, Y. Guo, D. Ye, Catal. Sci. Technol. 2015, 5, 1006.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Ohtb%2FM&md5=c80cb4041b342760ff03d06093416c1eCAS |

[47]  G. Scalmani, M. J. Frisch, J. Chem. Phys. 2010, 132, 114110.
         | Crossref | GoogleScholarGoogle Scholar | 20331284PubMed |

[48]  J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmtFSmsbw%3D&md5=04628299bdd41c9591cbd3dd826ded2eCAS |

[49]  T. Obata, E. Kobayashi, S. Aoshima, J. Furukawa, Polym. J. 1992, 24, 757.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsFWnurY%3D&md5=1d6f49711ea5e19bd50930191988db0fCAS |

[50]  P. S. Magee, Quant. Struct.-Act. Relat. 2000, 19, 22.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVWitro%3D&md5=22aeeb5aeccfc315f689d47036c1d211CAS |

[51]  J. R. Fischer, E. H. Abbott, Magn. Reson. Chem. 1995, 33, 283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1Wlt7g%3D&md5=aa4ae7470d4f420c7ad1e2edee13fc88CAS |

[52]  E. M. van der Aar, M. J. de Groot, G. J. Bijloo, H. van der Goot, N. P. Vermeulen, Chem. Res. Toxicol. 1996, 9, 527.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xpt1Sqtw%3D%3D&md5=b897519194257fd6ef3080ae3744b47aCAS | 8839058PubMed |

[53]  Q. Liu, Y. Zhao, B. Hammann, J. Eilers, Y. Lu, A. Kohen, J. Org. Chem. 2012, 77, 6825.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSju77L&md5=3dd4498c8d96fa17475d045d70910fb9CAS | 22834675PubMed |

[54]  D. Petkov, E. Christova, I. Pojarlieff, N. Stambolieva, Eur. J. Biochem. 1975, 51, 25.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XislCjsQ%3D%3D&md5=326ac9b55b541b587ce8432babdfdbd0CAS | 1122914PubMed |

[55]  A. Shibata, Y. Nakano, M. Ito, M. Araki, J. Zhang, Y. Yoshida, S. Shuto, B. Mannervik, R. Mogenstern, Y. Ito, H. Abe, Analyst 2013, 138, 7326.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGgsbfI&md5=3104d4fb05b0cd0c1cf6c996a4d0aae6CAS | 24151635PubMed |

[56]  S. Kumar, A. S. Faponle, P. Barman, A. K. Vardhaman, C. V. Sastri, D. Kumar, S. P. de Visser, J. Am. Chem. Soc. 2014, 136, 17102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFSiu7nP&md5=3e8f78a972dc24502d03c3e68186d927CAS | 25392052PubMed |

[57]  I. J. A. Ruth, H. S. Carl, A. S. Jason, F. Y. Brian, J. Org. Chem. 2009, 15, 5707.