The Nucleophilic Addition of In Situ Generated Calcium Thiolate of Benzonitrile to the Sidewall of Single-Walled Carbon Nanotubes: A New and Direct Approach for Thioamidation
Hossein Reza Darabi A B , Atefeh Roozkhosh A and Kioumars Aghapoor AA Nano and Organic Synthesis Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Blvd, km 17, Karaj Hwy, Tehran 14968-13151, Iran.
B Corresponding author. Email: darabi@ccerci.ac.ir
Australian Journal of Chemistry 69(2) 198-203 https://doi.org/10.1071/CH15286
Submitted: 14 March 2015 Accepted: 8 July 2015 Published: 17 August 2015
Abstract
A new and efficient method for the thioamidation of single-walled carbon nanotubes (SWCNTs) has been introduced by direct addition of an intermediately generated nitrogen-based nucleophile. In this approach, there is a synergistic effect between benzonitrile, CaH2, and thioacetic acid leading to the formation of calcium thiolate which subsequently added to the sidewalls of the tubes. This finding was also confirmed when SWCNTs with benzonitrile moieties on their sidewalls were tested. The successful covalent functionalization of SWCNTs has been proven by thermogravimetric analysis, Raman, IR, and X-ray photoelectron spectroscopy techniques.
References
[1] M. O’Connell, Carbon Nanotubes: Properties and Applications 2006 (Informa: Boca Raton, FL).[2] D. M. Guldi, N. Martín, Carbon Nanotubes and Related Structures 2010 (Wiley-VCH: Weinheim).
[3] S. Bianco, Carbon Nanotubes – From Research to Applications 2011 (InTech: Rijeka).
[4] A. Bianco, K. Kostarelos, M. Prato, Curr. Opin. Chem. Biol. 2005, 9, 674.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1aqu7fJ&md5=0d3c6b23f072a46f1249b5b92413ec08CAS | 16233988PubMed |
[5] K. Teker, R. Sirdeshmukh, K. Sivakumar, S. Lu, E. Wickstrom, H. N. Wang, T. Vo-Dinh, B. Panchapakesan, NanoBiotechnology 2005, 1, 171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cms77P&md5=6a7481528569241beefe8fee52050880CAS |
[6] Z. Guo, L. Liang, J. J. Liang, Y. F. Ma, X. Y. Yang, D. M. Ren, Y. S. Chen, J. Y. Zheng, J. Nanopart. Res. 2008, 10, 1077.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFegtb0%3D&md5=a00a9165e38ab530001eaf195bf6186eCAS |
[7] C. H. Andersson, H. Grennberg, Eur. J. Org. Chem. 2009, 4421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOmsL%2FK&md5=d0efcb0c068d0df00654b681685e9467CAS |
[8] M. Chen, J. Zang, D. Xiao, C. Zhang, F. Liu, Nano Res. 2009, 2, 938.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltlarsQ%3D%3D&md5=d10c5353c7b39d8e4b9c0da1c3f0f085CAS |
[9] W. Chidawanyika, T. Nyokong, Carbon 2010, 48, 2831.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslOmt74%3D&md5=27189da5b65c7fb62e9c206095ff926cCAS |
[10] X. Zhang, L. Meng, X. Wang, Q. Lu, Chem. – Eur. J. 2010, 16, 556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVyg&md5=3f1d52737eae682ceb9b4a39cc6f1493CAS | 19894228PubMed |
[11] P. Bonnet, M. Gresil, H. Bizot, I. Riou, P. Bertoncini, A. Buleon, O. Chauvet, J. Nanopart. Res. 2010, 12, 545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Gmtbw%3D&md5=ca4ce200ae2edf1233f0e745eaf7c913CAS |
[12] W. Cheung, F. Pontoriero, O. Taratula, A. M. Chen, H. He, Adv. Drug Deliv. Rev. 2010, 62, 633.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVelt7g%3D&md5=c6f78e9a05248b21ab28a0b2d216794aCAS | 20338203PubMed |
[13] S. R. Ji, C. Liu, B. Zhang, F. Yang, J. Xu, J. Long, C. Jin, D. L. Fu, Q. X. Ni, X. J. Yu, Biochim. Biophys. Acta – Rev. Cancer 2010, 1806, 29.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlGjurg%3D&md5=c26764c295ae3bd6107f734bc4e4d801CAS |
[14] N. G. Sahoo, S. Rana, J. W. Cho, L. Li, S. H. Chan, Prog. Polym. Sci. 2010, 35, 837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlGhtb4%3D&md5=7dc9cf877ff543a8c662d2fc6ca4c3beCAS |
[15] Y. B. Li, B. Q. Wei, J. Liang, Q. Yu, D. H. Wu, Carbon 1999, 37, 493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1Cjur0%3D&md5=5e55396d68b6633ac718f476aca1ec0aCAS |
[16] Y. A. Kim, T. Hayashi, Y. Fukai, M. Endo, T. Yanahisawa, M. S. Dresselhaus, Chem. Phys. Lett. 2002, 355, 279.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslWju7o%3D&md5=1466d38590e6326fd75163cda8b42d7fCAS |
[17] K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, C. B. Huffman, R. E. Smalley, Chem. Phys. Lett. 1998, 282, 429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFGmsLg%3D&md5=229a842a5c1d8591c603b93ae28f8fc6CAS |
[18] J. Hilding, E. A. Grulke, Z. G. Zhang, F. Lockwood, J. Dispers. Sci. Technol. 2003, 24, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht12kt7w%3D&md5=e91264c86b747fc878416ac7460717a2CAS |
[19] J. E. Riggs, D. B. Walker, D. L. Carroll, Y. P. Sun, J. Phys. Chem. B 2000, 104, 7071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1ehtbs%3D&md5=1cb3008f2e0d59265dd92c08e525d748CAS |
[20] O. Matarredona, H. Rhoads, Z. Li, J. Harwell, L. Balzano, D. Resasco, J. Phys. Chem. B 2003, 107, 13357.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVClu7o%3D&md5=ef516b58febd2208f68a67f9df2d85c0CAS |
[21] J. Chen, A. M. Rao, S. Lyuksyutov, M. E. Itkis, M. A. Hamon, H. Hu, R. W. Cohn, P. C. Eklund, D. T. Colbert, R. E. Smalley, R. C. Haddon, J. Phys. Chem. B 2001, 105, 2525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1yqu78%3D&md5=b195819e2f6b92a16efa031d4be91016CAS |
[22] M. C. O’Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, R. E. Smalley, Chem. Phys. Lett. 2001, 342, 265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVaitb4%3D&md5=7b4d7df6a7190af541c371c20400e677CAS |
[23] D. Chattopadhyay, S. Lastella, S. Kim, F. Papadimitrikapoulos, J. Am. Chem. Soc. 2002, 124, 728.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xislajuw%3D%3D&md5=17f6b8616dd9e2dbc01665963b10e6e8CAS | 11817929PubMed |
[24] D. Chattopadhyay, I. Galeska, F. Papadimitrikapoulos, J. Am. Chem. Soc. 2003, 125, 3370.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlGktLY%3D&md5=0047ba8bf4d8a9d51c9fb336cb4c5b0cCAS | 12630892PubMed |
[25] D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 2006, 106, 1105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs12lt74%3D&md5=e39eb679ca9d28419fdebc96a26c5dabCAS | 16522018PubMed |
[26] (a) Q. Peng, L. Qu, L. Dai, K. Park, R. A. Vaia, ACS Nano 2008, 2, 1833.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVChsL7N&md5=0d6dd686568bee5f4b3c64911791ef4cCAS | 19206422PubMed |
(b) K. Lee, L. Li, L. Dai, J. Am. Chem. Soc. 2005, 127, 4122.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. A. Hamon, H. Hu, P. Bhowmik, S. Niyogi, B. Zhao, M. E. Itkis, R. C. Haddon, Chem. Phys. Lett. 2001, 347, 8.
| Crossref | GoogleScholarGoogle Scholar |
[27] F. Pompeo, D. Reasaco, Nano Lett. 2002, 2, 369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1KisA%3D%3D&md5=145426406215d4d393c94bc264d28ab8CAS |
[28] C. A. Dyke, J. M. Tour, Nano Lett. 2003, 3, 1215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVehtbg%3D&md5=701da852ad67d92bd7a862ffb08b8f5cCAS |
[29] M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, R. E. Smalley, Science 2003, 301, 1519.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Oitr8%3D&md5=d5582f959e0b53b67b8814ba3d0c09aaCAS | 12970561PubMed |
[30] J. L. Bahr, J. M. Tour, J. Mater. Chem. 2002, 12, 1952.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslSjsro%3D&md5=82b126e0f71a59c362944cf1b974e244CAS |
[31] F. Buffa, H. Hu, E. D. Resasco, Macromolecules 2005, 38, 8258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1eqtb0%3D&md5=5ed23a0345fbe04f416cb08ebc14d12bCAS |
[32] S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, R. C. Haddon, Acc. Chem. Res. 2002, 35, 1105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVOjsLY%3D&md5=3f969a1796f3fd4d0f98462aa3a2b5beCAS | 12484799PubMed |
[33] T. Lin, V. Bajpai, T. Ji, L. Dai, Aust. J. Chem. 2003, 56, 635.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFSis7g%3D&md5=71db0884bdfb05c7cc692b7ca1aed289CAS |
[34] K. Balasubramanian, M. Burghard, Small 2005, 1, 180.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXot1CksA%3D%3D&md5=4dc179bf2415b3ddc67962281e41490dCAS | 17193428PubMed |
[35] D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 2006, 106, 1105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs12lt74%3D&md5=e39eb679ca9d28419fdebc96a26c5dabCAS | 16522018PubMed |
[36] J. X. Zhao, Y. H. Ding, J. Phys. Chem. C 2008, 112, 13141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlCjt74%3D&md5=ac36dbdcd3ebd462b89a8e880b246f9cCAS |
[37] N. Karousis, N. Tagmatarchis, T. Dimitrios, Chem. Rev. 2010, 110, 5366.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVSqtr8%3D&md5=4747eb838862af7f449de779dcb31279CAS | 20545303PubMed |
[38] R. Graupner, J. Abraham, D. Wunderlich, A. Vencelova, P. Lauffer, J. Rçhrl, M. Hundhausen, L. Ley, A. Hirsch, J. Am. Chem. Soc. 2006, 128, 6683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFKqsro%3D&md5=02509d7a467279d0401126e9a62a5aefCAS | 16704270PubMed |
[39] F. Liang, A. K. Sadana, A. Peera, J. Chattopadhyay, Z. Gu, R. H. Hauge, W. E. Billups, Nano Lett. 2004, 4, 1257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVGquro%3D&md5=a274a0e515f4da3606a3fe35b8522f70CAS |
[40] F. Liang, L. B. Alemany, J. M. Beach, W. E. Billups, J. Am. Chem. Soc. 2005, 127, 13941.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVSjtr4%3D&md5=0e5c8bdb9f8a4ef64c43a9bf2f469c2cCAS | 16201816PubMed |
[41] J. Chattopadhyay, A. K. Sadana, F. Liang, J. M. Beach, Y. Xiao, W. E. Billups, Org. Lett. 2005, 7, 4067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1Wiu70%3D&md5=49046781c9629af9e304e28273f2118fCAS | 16146353PubMed |
[42] Z. Syrgiannis, F. Hauke, J. Röhrl, M. Hundhausen, R. Graupner, Y. Elemes, A. Hirsch, Eur. J. Org. Chem. 2008, 2544.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1Sksbk%3D&md5=427f6fe8c7aa74e5677e75ebb1403901CAS |
[43] B. Gebhardt, R. Graupner, F. Hauke, A. Hirsch, Eur. J. Org. Chem. 2008, 2544.
[44] T. S. Jagodzinski, Chem. Rev. 2003, 103, 197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFOls74%3D&md5=9b41e4c870cf7a866a44e80bb8493ee0CAS | 12517184PubMed |
[45] H. R. Darabi, S. Mohandessi, K. Aghapoor, F. Mohsenzadeh, M. Hashemi Karouei, F. Tahoori, R. Herges, Aust. J. Chem. 2009, 62, 413.
| 1:CAS:528:DC%2BD1MXmtVWiu7c%3D&md5=4924250d0c43613f5f7f84cbe24d224dCAS |
[46] H. R. Darabi, M. Jafar Tehrani, K. Aghapoor, F. Mohsenzadeh, R. Malekfar, Appl. Surf. Sci. 2012, 258, 8953.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlSrsbk%3D&md5=763529953f2455ee956c33840cdd6771CAS |
[47] H. R. Darabi, A. Roozkhosh, M. Jafar Tehrani, K. Aghapoor, H. Sayahi, Y. Balavar, F. Mohsenzadeh, Appl. Surf. Sci. 2014, 288, 122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWgsr7M&md5=d227ac63811714ad8edcebc9007428bcCAS |
[48] C. A. Dyke, J. M. Tour, Chem. – Eur. J. 2004, 10, 812.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVKrt78%3D&md5=cb75f619314c1fa616004417fff513f4CAS | 14978808PubMed |
[49] K. A. Mahammed, V. P. Jayashankara, N. Premsai Rai, K. Mohana Raju, P. N. Arunachalam, Synlett 2009, 14, 2338.
[50] R. J. J. Jansen, H. Van Bekkum, Carbon 1995, 33, 1021.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotFans70%3D&md5=98b92d64a2151d2d71a7769d773a1c9cCAS |