Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Preparation of Uniform BiOI Nanoflowers with Visible Light-Induced Photocatalytic Activity

Feng Cao A , Xin Lv A , Jun Ren A , Linqing Miao A , Jianmin Wang A , Song Li A and Gaowu Qin A B
+ Author Affiliations
- Author Affiliations

A Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.

B Corresponding author. Email: qingw@smm.neu.edu.cn

Australian Journal of Chemistry 69(2) 212-219 https://doi.org/10.1071/CH15176
Submitted: 11 April 2015  Accepted: 10 July 2015   Published: 14 August 2015

Abstract

Novel 3D flower-like bismuth oxyiodide (BiOI) nanomaterials were obtained via a facile solvothermal method using bismuth nitrate (Bi(NO3)3) and potassium iodide (KI) as precursors and diethylene glycol as the capping reagent. The morphology of the BiOI nanoarchitecture strongly depends on the experimental conditions such as the presence of diethylene glycol and hydrothermal time. The photocatalytic property of the BiOI nanostructures by monitoring the degradation of rhodamine B (RhB) and methyl orange (MO) mixed dyes was studied under visible light illumination, which has not been reported previously. The degradation of single cationic RhB dye is faster when compared with that of anionic MO dye. This result is due to the surface negative charges on the BiOI nanoflowers that display good selectivity towards positive RhB dye organic groups owing to electrostatic attraction.


References

[1]  A. Fujishima, K. Honda, Nature 1972, 37, 238.

[2]  J. G. Yu, J. X. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc. 2014, 136, 8839.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps1Srtrg%3D&md5=a7d0a154d7d747ce5c66f302b9cf244dCAS |

[3]  R. Marschall, Adv. Funct. Mater. 2014, 24, 2421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFGhsr3J&md5=597b6f8aa5b3b65461b5f92be2982390CAS |

[4]  J. Y. Gan, X. H. Lu, Y. X. Tong, Nanoscale 2014, 6, 7142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVansrvP&md5=6d2215b30f7742f11218e7881a83a09aCAS |

[5]  Q. J. Xiang, J. G. Yu, M. Jaroniec, Chem. Soc. Rev. 2012, 41, 782.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFGquw%3D%3D&md5=173b31b469293fae98dde56a736e1398CAS |

[6]  H. Tong, S. X. Ouyang, Y. P. Bi, N. Umezawa, M. Oshikiri, J. H. Ye, Adv. Mater. 2012, 24, 229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OhtrvK&md5=a68474708ba139caa85f67ef15bfff32CAS | 21972044PubMed |

[7]  H. Liu, Y. Su, Z. Chen, Z. T. Jin, Y. Wang, J. Hazard. Mater. 2014, 266, 75.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCqtrw%3D&md5=a22179cfaf857188860c06b2526316edCAS | 24374567PubMed |

[8]  J. Li, Y. Yu, L. Z. Zhang, Nanoscale 2014, 6, 8473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKlsLzM&md5=139de5c838fc113bdb352b92efe89232CAS | 24975748PubMed |

[9]  L. Chen, R. Huang, M. Xiong, Q. Yuan, J. He, J. Jia, M. Y. Yao, S. L. Luo, C. T. Au, S. F. Yin, Inorg. Chem. 2013, 52, 11118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOhu7%2FP&md5=5613f2caaaf11e27a9b7391912c89cc2CAS | 24050663PubMed |

[10]  G. F. Li, F. Qin, R. M. Wang, S. Q. Xiao, H. Z. Sun, R. Chen, J. Colloid Interface Sci. 2013, 409, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlems7jN&md5=ccb2af88236f8e17ff330b0f85d9d365CAS |

[11]  Q. C. Liu, D. K. Ma, Y. Y. Hu, Y. W. Zeng, S. M. Huang, ACS Appl. Mater. Interfaces 2013, 5, 11927.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Cgs7zP&md5=43e877f487b9d71f9bbd98114e9647a9CAS | 24138056PubMed |

[12]  H. W. Huang, X. W. Li, X. Han, N. Tian, Y. H. Zhang, T. R. Zhang, Phys. Chem. Chem. Phys. 2015, 17, 3673.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFehur3L&md5=e6275f75e637dc9de6926ebfd1a57eeeCAS |

[13]  K. Vignesh, A. Suganthi, B. K. Min, M. Kang, Appl. Surf. Sci. 2015, 324, 652.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFCnsb%2FO&md5=319ea9beea1f47835d7b0cbd0df8a1f5CAS |

[14]  Y. F. Liu, W. Q. Yao, D. Liu, R. L. Zong, M. Zhang, X. G. Xia, Y. F. Zhu, Appl. Catal., B 2015, 163, 547.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVKmsrvK&md5=18b22a4cda4435f9922ba482f40c30e5CAS |

[15]  Q. Y. Lei, H. G. Wang, S. S. Song, Q. W. Fan, M. Pang, K. J. Tang, H. J. Zhang, Dalton Trans. 2010, 39, 3273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1KntL0%3D&md5=bdfb2e1870dd6fb62b172fa6aaed0afeCAS |

[16]  J. Di, J. X. Xia, S. Yin, H. Xu, L. Xu, Y. G. Xu, M. Q. He, H. M. Li, J. Mater. Chem. A 2014, 2, 5340.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1Slur4%3D&md5=ab82849fd5f515d3ef58a1a023831313CAS |

[17]  J. X. Xia, S. Yin, H. M. Li, H. Xu, Y. S. Yan, Q. Zhang, Langmuir 2011, 27, 1200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1altLbJ&md5=288939e31239d753ddce19f3b517ed23CAS |

[18]  C. D. Wagner, W. W. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy 1978 (PerkinElmer, Eden Prairie: MN).

[19]  Q. M. Peng, J. X. Guo, Q. R. Zhang, J. Y. Xiang, B. Z. Liu, A. G. Zhou, R. P. Liu, Y. J. Tian, J. Am. Chem. Soc. 2014, 136, 4113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjsVehtr4%3D&md5=b72a424500bbb973e0674ea8aec34ef6CAS |

[20]  F. Cao, J. M. Wang, S. Li, J. J. Cai, W. H. Tu, X. Lv, G. W. Qin, J. Alloys Compd. 2015, 639, 445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFGrsrw%3D&md5=cfa45bcfb2295b6150db4624a97bbecdCAS |

[21]  R. Chalasani, S. Vasudevan, ACS Nano 2013, 7, 4093.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1eltbk%3D&md5=56ed5deb011b7c5427d080ebcdf3e25fCAS | 23600646PubMed |

[22]  M. Miyauchi, Y. Nukui, D. Atarashi, E. Sakai, ACS Appl. Mater. Interfaces 2013, 5, 9770.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOqu73K&md5=09b7ffed5bdd3a536bbb361008a50899CAS | 24001210PubMed |

[23]  X. X. Yu, J. G. Yu, B. Cheng, B. B. Huang, Chem. – Eur. J. 2009, 15, 6731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVemsb8%3D&md5=4864411492a699e9cedf06ab49babadcCAS |

[24]  L. W. Yue, B. S. Li, Z. M. Ren, X. Li, Chem. Lett. 2014, 43, 1420.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1aisbzJ&md5=704868eee3feac7d9c48d5f28723863cCAS |

[25]  M. Xu, L. Han, S. J. Dong, ACS Appl. Mater. Interfaces 2013, 5, 12533.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslers7bI&md5=387c05abfda75de5f6a4cf7a4bd8bc25CAS | 24206347PubMed |

[26]  G. Cheng, J. Y. Xiong, F. J. Stadler, New J. Chem. 2013, 37, 3207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCqtr7P&md5=b38fd08815004bf836ace7627fa038fdCAS |

[27]  R. Hao, X. Xiao, X. X. Zuo, J. M. Nan, W. D. Zhang, J. Hazard. Mater. 2012, 209-210, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XislyjtLo%3D&md5=3ff2ddfe51586636bd1a134d1c3fefb8CAS | 22277340PubMed |