Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Combination of Pyridinium and Isoquinolinium Ylides with Phenylisocyanate and Isothiocyanates: Synthesis, Characterisation, and X-Ray Crystal Structures of Mesoionic Monosubstituted 3-Oxo-Propanamides or Thioamides

Mohammad Seifi A , S. Yousef Ebrahimipour B , Jim Simpson C , Michal Dusek D , Vaclav Eigner D and Hassan Sheibani B E
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Faculty of Science Najafabad Branch, Islamic Azad University, Najafabad, Esfahan, Iran.

B Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, Iran.

C Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

D Institute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic.

E Corresponding author. Email: hsheibani@mail.uk.ac.ir

Australian Journal of Chemistry 68(10) 1577-1582 https://doi.org/10.1071/CH15113
Submitted: 7 March 2015  Accepted: 24 April 2015   Published: 3 June 2015

Abstract

Pyridinium ylides derived from 2-bromoacetophenone or methyl bromoacetate have been reacted with phenylisocyanate, phenyl- or methylisothiocyanate to afford mesoionic monosubstituted 3-oxo-propanamides or thioamides, via self-protonation of the intermediate N-anion. A similar reaction under the same conditions of isoquinolinium ylides with phenylisocyanate or phenyisothiocyante also produced the corresponding mesoionic compounds. In order to establish the exact structure of the mesoionic compounds, single crystal X-ray structures were obtained for three of the pyridinium ylides.


References

[1]  D. W. Ollis, S. P. Stanforth, Tetrahedron 1985, 41, 2239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xht12rsrk%3D&md5=0b015d94b679ce8c3978b0700a9adce0CAS |

[2]  Y. Karzazi, G. Surpateanu, Heterocycles 1999, 51, 863.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVSgt7c%3D&md5=2777ff2a706768961bcbb575ad525f93CAS |

[3]  A. Padwa, 1,3-Dipolar Cycloaddition Chemistry 1984 (Wiley: New York, NY).

[4]  M. Zahedifar, H. Sheibani, Aust. J. Chem. 2014, 67, 1201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVynt77L&md5=4a6b354643b9283deca6e848a5a95c03CAS |

[5]  M. Abaszadeh, H. Sheibani, K. Saidi, Aust. J. Chem. 2010, 63, 92.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVWjtg%3D%3D&md5=23a97615f323e4043a8d4131c7a916dbCAS |

[6]  H. Sheibani, P. V. Bernhardt, C. Wentrup, J. Org. Chem. 2005, 70, 5859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlykt7c%3D&md5=dada98f63308eb66ef192732495ec57aCAS | 16018678PubMed |

[7]  F. Dumitrascu, M. T. Caproiu, F. Georgescu, B. Draghici, M. M. Popa, E. Georgescu, Synlett 2010, 2407.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVamsrjN&md5=930ee0e9e575a64d0653546c6f8251f9CAS |

[8]  P. Woisel, G. Surpateanu, F. Delatre, M. Eur Bria, Eur. J. Org. Chem. 2001, 7, 1407.

[9]  A. Rotaru, I. Druta, T. Oeser, T. J. J. Muller, Helv. Chim. Acta 2005, 88, 1798.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  D. S. Allgäuer, H. Mayer, H. Mayer, J. Am. Chem. Soc. 2013, 135, 15216.
         | Crossref | GoogleScholarGoogle Scholar | 24020381PubMed |

[11]  L. R. Falvello, S. Fernández, R. Navarro, E. P. Urriolabeitia, Inorg. Chem. 1997, 36, 1136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFGgtrY%3D&md5=022448b046611021cac56653466f63edCAS | 11669680PubMed |

[12]  R. Postolachi, R. Danac, N. J. Buurma, A. Pui, M. Balan, S. Shova, C. Deleanu, RSC Adv. 2013, 3, 17260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVShs7fO&md5=2f319c6d6ffa8bf13b8d66d11b6cae85CAS |

[13]  S. Danishefsky, Acc. Chem. Res. 1979, 12, 66.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtVent7c%3D&md5=0e06bab2ddc888edeba74e603ad8790dCAS |

[14]  D. M. Jerina, J. M. Daly, Science 1974, 185, 573.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlsVGmtL0%3D&md5=741a5ec52669a77e16cdcf1eff370d3fCAS | 4841570PubMed |

[15]  G. Surpateanu, J. P. Catteau, P. Karafiloglou, A. Lablache-Combier, Tetrahedron 1976, 32, 2647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhslWitrs%3D&md5=6f263db75e5bc6578eb74479c2ce7eb5CAS |

[16]  C. D. Papageorgiou, M. A. Cubillo de Dios, S. V. Ley, M. J. Gaunt, Angew. Chem. Int. Ed. 2004, 43, 4641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVantrc%3D&md5=f2b24e14b0a909d49d0aa9eac0e92a7eCAS |

[17]  S. Kojima, K. Fujitomo, Y. Shinohara, M. Shimizu, K. Ohkata, Tetrahedron Lett. 2000, 41, 9847.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFGjs7g%3D&md5=15e9c4eec3c6b9f4c5fd64c2af322d39CAS |

[18]  S. Kojima, M. Suzuki, A. Watanabe, K. Ohkata, Tetrahedron Lett. 2006, 47, 9061.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cmtr3E&md5=3cfb99127004ba22aa0ae850fc535dcdCAS |

[19]  A. Domling, I. Ugi, Angew. Chem. Int. Ed. 2000, 39, 3168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntleksbk%3D&md5=23d93c871bc6670d102c6bbabc42de8cCAS |

[20]  C. G. Yan, X. M. Cai, Q. F. Wang, T. Y. Wang, M. Zheng, Org. Biomol. Chem. 2007, 5, 945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisV2gtL0%3D&md5=d75cc9e3e86e05c914cdf04c1d9aaf3cCAS | 17340010PubMed |

[21]  Y. Han, H. Hou, Q. Fu, C. G. Yan, Tetrahedron 2011, 67, 2313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFGks7g%3D&md5=8fced8ce7b79155dc8863e112c29a58cCAS |

[22]  Y. G. Gololobov, O. V. Dovgan, I. R. Golding, P. V. Petrovskii, I. A. Garbuzova, Heteroat. Chem. 2002, 13, 36.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslyksQ%3D%3D&md5=2780e98fab89c80ee074f61b6d6621b3CAS |

[23]  J. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem., Int. Ed. Engl. 1995, 34, 1555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXns1altLk%3D&md5=790a47635f0acea212ab973488252e67CAS |

[24]  C. R. Groom, F. H. Allen, Angew. Chem. Int. Ed. 2014, 53, 662.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1ektg%3D%3D&md5=fe93b66af2ce1949658f80c649d4b91cCAS |

[25]  L. Palatinus, G. Chapuis, J. Appl. Cryst. 2007, 40, 786.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslWqtrg%3D&md5=c3c8dd45df205de1b3cf2faee962bed7CAS |

[26]  V. Petricek, M. Dusek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.
         | 1:CAS:528:DC%2BC2cXmslyjsbs%3D&md5=b75b4317104dab9847543898e38530b1CAS |

[27]  J. Rohlicek, M. Husak, J. Appl. Cryst. 2007, 40, 600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlKqu74%3D&md5=9a5c2bcfad5af22478710f897e4911fdCAS |

[28]  A. Hazra, S. Mondal, A. Maity, S. Naskar, P. Saha, R. Paira, K. B. Sahu, P. Paira, S. Ghosh, C. Sinha, A. Samanta, S. Banerjee, N. B. Mondal, Eur. J. Med. Chem. 2011, 46, 2132.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVCntrg%3D&md5=10b992e6a30d8264601077cfa472ecc4CAS | 21440339PubMed |