Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Syntheses of Cytosporones A, C, J, K, and N, Metabolites from Medicinal Fungi

Andrew M. Beekman A and Russell A. Barrow A B
+ Author Affiliations
- Author Affiliations

A Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.

B Corresponding author. Email: rab@anu.edu.au

Australian Journal of Chemistry 68(10) 1583-1592 https://doi.org/10.1071/CH15144
Submitted: 23 March 2015  Accepted: 24 April 2015   Published: 5 June 2015

Abstract

The syntheses of the fungal metabolites cytosporones A, (±)-C, and N are reported. And the syntheses of cytosporones J and K are described for the first time. The preparation of racemic cytosporone J and racemic cytosporone K, natural products containing the rare 3-isochromanone substructure, was achieved in 8 linear steps with an overall yield of 45 % and 7 linear steps in 46 % yield, respectively, resulting in the complete characterization of these compounds for the first time. The key steps included a recently described homologation of benzoic acid to the analogous phenyl acetate using Birch reductive alkylation conditions, acylation of the appropriate phenyl acetate derivative, and a selective reduction and spontaneous biomimetic lactonization to yield the 3-isochromanone skeleton. The synthesized natural products were evaluated for their biological activity against several clinical strains of human pathogens with all compounds displaying weak antimicrobial activity.


References

[1]  (a) A. M. Beekman, R. A. Barrow, Aust. J. Chem. 2014, 67, 827.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvFCrt7s%3D&md5=f12f126fd08c36d37e54cf0c1101a031CAS |
      (b) D. J. Newman, G. M. Cragg, J. Nat. Prod. 2012, 75, 311.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. S. Butler, J. Nat. Prod. 2004, 67, 2141.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  J.-J. Zhong, J.-H. Xiao, in Biotechnology in China I (Eds J.-J. Zhong, F.-W. Bai, W. Zhang, 2009, Vol 113, pp. 79–150 (Springer: Berlin Heidelberg).

[3]  M. Blackwell, Am. J. Bot. 2011, 98, 426.
         | Crossref | GoogleScholarGoogle Scholar | 21613136PubMed |

[4]  S. F. Brady, M. M. Wagenaar, M. P. Singh, J. E. Janso, J. Clardy, Org. Lett. 2000, 2, 4043.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFylsrY%3D&md5=310bbe26ce290b95e99f72448d8d98acCAS | 11112639PubMed |

[5]  J. Xu, J. Kjer, J. Sendker, V. Wray, H. Guan, R. Edrada, W. E. G. Müller, M. Bayer, W. Lin, J. Wu, P. Proksch, Bioorg. Med. Chem. 2009, 17, 7362.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ais7bM&md5=cb1720c545bae7e63d9f730db4bec03eCAS | 19762244PubMed |

[6]  Z. Huang, X. Cai, C. Shao, Z. She, X. Xia, Y. Chen, J. Yang, S. Zhou, Y. Lin, Phytochemistry 2008, 69, 1604.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVOlsL8%3D&md5=1cb5965cdd5c32000e0ca5d0616a8e52CAS | 18343465PubMed |

[7]  (a) L. M. Abreu, R. K. Phipps, L. H. Pfenning, C. H. Gotfredsen, J. A. Takahashi, T. O. Larsen, Tetrahedron Lett. 2010, 51, 1803.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFKktbo%3D&md5=18a2482b1367b01698e751630914f927CAS |
      (b) C. A. Boulet, G. A. Poulton, Can. J. Chem. 1983, 61, 2285.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. C. Crawley, J. Chem. Soc., Perkin Trans. 1 1981, 221.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. E. Michael, Biochem. J. 1948, 43, 528.
      (e) K. Yoganathan, C. Rossant, S. Ng, Y. Huang, M. S. Butler, A. D. Buss, J. Nat. Prod. 2003, 66, 1116.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) F.-D. Boyer, X. Le Goff, I. Hanna, J. Org. Chem. 2008, 73, 5163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGqsbw%3D&md5=996d455ac5cf74a665b4f478f1f7d116CAS | 18533703PubMed |
      (b) M. Braun, E. Ringer, Tetrahedron Lett. 1983, 24, 1233.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. Kraiss, M. Povarny, P. Scheiber, K. Nador, Tetrahedron Lett. 1973, 14, 2359.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) F. G. Mann, F. H. C. Stewart, J. Chem. Soc. 1954, 2819.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) T. Matsumoto, T. Hamura, Y. Kuriyama, K. Suzuki, Tetrahedron Lett. 1997, 38, 8985.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) T. S. Stevens, J. Chem. Soc. 1927, 178.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  A. M. Beekman, E. Castillo Martinez, R. A. Barrow, Org. Biomol. Chem. 2013, 11, 1109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCnt7k%3D&md5=9308aa29f6a93b2515ce3f6b7d6df7f3CAS | 23296028PubMed |

[10]  H. Huang, L. Zhang, X. Zhang, X. Ji, X. Ding, X. Shen, H. Jiang, H. Liu, Chin. J. Chem. 2010, 28, 104.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. G. Banwell, B. L. Flynn, S. G. Stewart, J. Org. Chem. 1998, 63, 9139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntF2qtrk%3D&md5=137b32270deca333c4a6ee4dfd551abbCAS |

[12]  (a) M. McCulloch, R. Barrow, Molecules 2005, 10, 1272.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1WmsrnJ&md5=e76961cac4b3d229293b5ca2501e045aCAS | 18007519PubMed |
      (b) M. W. B. McCulloch, R. A. Barrow, Tetrahedron Lett. 2005, 46, 7619.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. von Delius, C. M. Le, V. M. Dong, J. Am. Chem. Soc. 2012, 134, 15022.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12jurfL&md5=ddd6cb8c2f38fe1b665d4860ef9c8a4fCAS | 22938187PubMed |

[14]  J. Poldy, R. Peakall, R. A. Barrow, Tetrahedron Lett. 2008, 49, 2446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtl2nu7k%3D&md5=09a6432508780c155e8a181ebceac2ecCAS |

[15]  H. C. Brown, J. Chandrasekharan, P. V. Ramachandran, J. Am. Chem. Soc. 1988, 110, 1539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtFamsbw%3D&md5=ecd262f3d0b4b579d6527837c0a65f25CAS |

[16]  (a) E. J. Corey, R. K. Bakshi, S. Shibata, J. Am. Chem. Soc. 1987, 109, 5551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlslGlsrs%3D&md5=e2744e043736e8b6623c6bcac1c237cbCAS |
      (b) E. J. Corey, R. K. Bakshi, S. Shibata, C. P. Chen, V. K. Singh, J. Am. Chem. Soc. 1987, 109, 7925.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  C. E. M. Zamberlam, A. Meza, C. B. Leite, M. R. Marques, D. P. de Lima, A. Beatriz, J. Braz. Chem. Soc. 2012, 23, 124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntVyqt7w%3D&md5=537154741246ac8de23d72a3642450b9CAS |

[18]  A. M. Beekman, R. A. Barrow, J. Nat. Prod. 2013, 76, 2054.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1yls7%2FF&md5=b363c4433de47e76ba51dbbd27eb345bCAS | 24168147PubMed |

[19]  (a) For van't Hoff's original work see: J. H. van’t Hoff, Vieweg Braunschweig 1908, 8, 95.
      (b) For discussion on the application of van't Hoff's principle see: R. K. Kondru, S. Lim, P. Wipf, D. N. Beratan, Chirality 1997, 9, 469. and citations therein.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  J. Staunton, K. J. Weissman, Nat. Prod. Rep. 2001, 18, 380.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlyqsbo%3D&md5=ca8f35aa22f26b947988ce62d7dfd906CAS | 11548049PubMed |

[21]  The optical rotation recorded for cytosporone L ([α]D20 – 8 (c 0.02 in MeOH)) by Proksch et al.[5] appears aberrant as it is not consistent with either van’t Hoff’s principle or the rotations observed for cytosporone C and the work of Dong et al.[12] This discrepancy may be due to the commonly observed inaccuracies obtained from determining specific rotations with small amounts of compound. However, the authors do note that this is contrary evidence to our proposal.

[22]  (a) H. Greve, P. J. Schupp, E. Eguereva, S. Kehraus, G. Kelter, A. Maier, H.-H. Fiebig, G. M. König, Eur. J. Org. Chem. 2008, 2008, 5085.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. Dai, K. Krohn, U. Flörke, G. Pescitelli, G. Kerti, T. Papp, K. E. Kövér, A. C. Bényei, S. Draeger, B. Schulz, T. Kurtán, Eur. J. Org. Chem. 2010, 2010, 6928.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  (a) For a sample of citations see: O. C. Musgrave, J. Chem. Soc. 1956, 4301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXitFOkuw%3D%3D&md5=a87a00eac255a39835ba1b32e2281f55CAS |
      (b) A. J. Birch, O. C. Musgrave, R. W. Rickards, H. Smith, J. Chem. Soc. 1959, 3146. and citing references.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  F. A. H. Rice, C. G. Chen, J. Pharm. Sci. 1984, 73, 1846.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1Kqtro%3D&md5=bc381503a7047dd562f164895ea45f9bCAS |

[25]  (a) S. Chand, I. Lusunzi, D. Veal, L. Williams, P. Karuso, J. Antibiot. 1994, 47, 1295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXit1yrt7w%3D&md5=3feb8797f6843124b0a7f336d92ef7f6CAS | 8002394PubMed |
      (b) V. Steenkamp, E. Mathivha, M. C. Gouws, C. E. J. van Rensburg, J. Ethnopharmacol. 2004, 95, 353.
         | Crossref | GoogleScholarGoogle Scholar |