Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Facile Synthesis of Hierarchical CuO Microspheres and their Gas Sensing Properties for NOx at Room Temperature

Wanzhen Song A , Hongyuan Wu A , Jingchao Wang A , Yufei Lin A , Jiabao Song A , Yu Xie B , Li Li A C D and Keying Shi A D
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University,Harbin 150080, China.

B Department of Materials Chemistry, Nanchang Hangkong University,Nanchang 330063, China.

C Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.

D Corresponding authors. Email: llwjjhlju@sina.cn; shikeying2008@163.com

Australian Journal of Chemistry 68(10) 1569-1576 https://doi.org/10.1071/CH15126
Submitted: 14 March 2015  Accepted: 23 April 2015   Published: 4 June 2015

Abstract

In this research, hierarchical CuO microspheres have been successfully synthesised by a facile reflux method. Scanning electron microscopy results clearly revealed that the hierarchical CuO microspheres were composed of two-dimensional nanosheets. The morphology of the prepared products could be tailored by changing the precursor concentration. The CuO-2 sample shows a higher NOx gas sensing performance with a low detection limit of 0.97 ppm, high gas response of 64.93 %, and short response time of 5.33 s to 97.0 ppm NOx at room temperature. The CuO-2 sensor also presents good selectivity and stability. The significantly improved gas response was concluded to be related to the well aligned microstructures and the improved conductivity of the CuO-2 sample. The unique hierarchical structure allows effective and rapid gas diffusion towards the sensing surfaces. In addition, the sensing mechanism based on the hierarchical CuO microspheres is discussed.


References

[1]  S. M. Cui, H. H. Pu, G. H. Lu, Z. H. Wen, E. C. Mattson, C. Hirschmug, M. Gajdardziska-Josifovska, M. Weinert, J. H. Chen, ACS Appl. Mater. Interfaces 2012, 4, 4898.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKmu7fN&md5=57082c9d13be2572f9937b62ac00e21cCAS |

[2]  W. J. Yuan, L. Huang, Q. Q. Zhou, G. Q. Shi, ACS Appl. Mater. Interfaces 2014, 6, 17003.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFWjsrzP&md5=98555031d43b364bd046318391144400CAS |

[3]  S. M. Cui, Z. H. Wen, E. C. Mattson, S. Mao, J. B. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska, J. H. Chen, J. Mater. Chem. A 2013, 1, 4462.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVCkurY%3D&md5=47232ff0bbaf38626a2058be697c8133CAS |

[4]  S.F. Xia, H.C. Zhu, H.T. Cai, J.Q. Zhang, J. Yu, Z.A. Tang, RSC Adv. 2014, 4, 57975.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVamtrzI&md5=6b42ec1b97d850c9aa75870d2de9d170CAS |

[5]  S. Mao, S. M. Cui, G. H. Lu, K. H. Yu, Z. H. Wen, J. H. Chen, J. Mater. Chem. 2012, 22, 11009.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFaqsbo%3D&md5=32b95d6f6b09ff21dfe67101a0041048CAS |

[6]  P. L. Wang, Y. M. Fu, B. W. Yu, Y. Y. Zhao, L. L. Xing, X. Y. Xue, J. Mater. Chem. A 2015, 3, 3529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFCqsr7N&md5=28459e33ffb52c22030fe5bf69ebac01CAS |

[7]  A. Qurashi, E.M. El-Maghraby, T. Yamazaki, Y. Shen, T. Kikuta, J. Alloys Compd. 2009, 481, L35.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1aqtbY%3D&md5=e91df1fa75f2b98966113ef78046bb35CAS |

[8]  Z. H. Zhou, C. H. Lu, X. D. Wu, X. X. Zhang, RSC Adv. 2013, 3, 26066.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslyhu7rO&md5=cc1656b60da6784993d52b7173dd78fcCAS |

[9]  B. Pecquenard, F. L. Cras, D. Poinot, O. Sicardy, J. P. Manaud, ACS Appl. Mater. Interfaces 2014, 6, 3413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVWhtr0%3D&md5=237415eced7f1083fe50ddf8b15029abCAS | 24521248PubMed |

[10]  B. G. Ganga, P. N. Santhosh, J. Alloys Compd. 2014, 612, 456.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFaktrjN&md5=e20e5c94c53925230fce93f384c2cd2eCAS |

[11]  S. B. Khan, M. Faisal, M. M. Rahman, I. A. Abdel-Latif, A. A. Ismail, K. Akhtar, A. Al-Hajry, A. M. Asiri, K. A. Alamry, New J. Chem. 2013, 37, 1098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFSqurw%3D&md5=27ca359cc906a1e8769dedd7e071d0a7CAS |

[12]  M. Mashock, K. Yu, S. M. Cui, S. Mao, G. H. Lu, J. H. Chen, ACS Appl. Mater. Interfaces 2012, 4, 4192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKqu7%2FK&md5=d04f5ac33bcc46dae706beacfc106154CAS | 22817670PubMed |

[13]  B. J. Hansen, N. Kouklin, G. H. Lu, I. K. Lin, J. H. Chen, X. Zhang, J. Phys. Chem. C 2010, 114, 2440.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGgsbg%3D&md5=3edf230461bc4c8c7fc2d3115ce9f465CAS |

[14]  B. Zhao, P. Liu, H. Zhuang, Z. Jiao, T. Fang, W. W. Xu, B. Lu, Y. Jiang, J. Mater. Chem. A 2013, 1, 367.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSisrnJ&md5=fdbad7c740d01fc14d317b26ed332c28CAS |

[15]  S. Yuan, X. L. Huang, D. L. Ma, H. G. Wang, F. Z. Meng, X. B. Zhang, Adv. Mater. 2014, 26, 2273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVyksLc%3D&md5=ea51fb71f380dbde3c441f2833feb1b8CAS | 24443100PubMed |

[16]  M. Breedon, S. Zhuiykov, N. Miura, Mater. Lett. 2012, 82, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVOgs7g%3D&md5=42daa550b733c1eff55e4d7e9e124957CAS |

[17]  X. P. Li, Y. Wang, Y. Lei, Z. Y. Gu, RSC Adv. 2012, 2, 2302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWlu7Y%3D&md5=0fef2612d188e0dd789c5d304391e7e5CAS |

[18]  Y. H. Choi, D. H. Kim, S. H. Hong, K. S. Hong, Sens. Actuators B 2013, 178, 395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFCmsL8%3D&md5=4a5e41f13ff1430f9a80fe03ceb4d996CAS |

[19]  R. K. Bedi, I. Singh, ACS Appl. Mater. Interfaces 2010, 2, 1361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVKrtbo%3D&md5=d19575a023206dfea2b842a6bdcf77c5CAS | 20402466PubMed |

[20]  C. W. Zou, J. Wang, F. Liang, W. Xie, L. X. Shao, D. J. Fu, Curr. Appl. Phys. 2012, 12, 1349.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  H. J. Park, N. J. Choi, H. Kang, M. Y. Jung, J. W. Park, K. H. Park, D. S. Lee, Sens. Actuators B 2014, 203, 282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Kmu73N&md5=a0fc7e0df78e84519573e1988b777803CAS |

[22]  X. L. Gou, G. X. Wang, J. Yang, J. Park, D. Wexler, J. Mater. Chem. 2008, 18, 965.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlars7k%3D&md5=a51fc373b311462da934e9e4453e7a72CAS |

[23]  H. Kim, C. Jin, S. Park, S. Kim, C. Lee, Sens. Actuators B 2012, 161, 594.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCjsbc%3D&md5=97b0c8c144179e1520b6b0463047306cCAS |

[24]  J. M. Xu, J. Zhang, B. B. Wang, F. Liu, J. Alloys Compd. 2015, 619, 361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFGltbvK&md5=55f518dda3409277b915087d41a77ccdCAS |

[25]  P. Rai, W. K. Kwak, Y. T. Yu, ACS Appl. Mater. Interfaces 2013, 5, 3026.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksVyjtrc%3D&md5=9c868359bccc0866a88627304088584cCAS | 23517337PubMed |

[26]  L. Li, M. Liu, S. J. He, W. Chen, Anal. Chem. 2014, 86, 7996.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFChur3F&md5=5eb04392bdb97343cadec8de630881bdCAS | 25011608PubMed |

[27]  C. Yang, F. Xiao, J. D. Wang, X. T. Su, J. Colloid Interface Sci. 2014, 435, 34.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2msrbP&md5=e19e079912aeb675d6b9d54218e0f8b9CAS | 25217728PubMed |

[28]  N. H. Hung, N. D. Thanh, N. H. Lam, N. D. Dien, N. D. Chien, D. D. Vuong, Mater. Sci. Semicond. Process. 2014, 26, 18.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  Y. Qin, F. Zhang, Y. Chen, Y. J. Zhou, J. Li, A. W. Zhu, Y. P. Luo, Y. Tian, J. H. Yang, J. Phys. Chem. C 2012, 116, 11994.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFWqsrs%3D&md5=57161412913f67e37126cde0020f2496CAS |

[30]  N. D. Hoa, N. V. Quy, H. Jung, D. Kim, H. Kim, S. K. Hong, Sens. Actuators B 2010, 146, 266.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  H. Y. Yan, X. Q. Tian, J. Sun, F. G. Ma, J. Mater. Sci.: Mater. Electron. 2015, 26, 280.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVOktbvP&md5=c5eacfdf7472351eb5dcd521e61a8b11CAS |

[32]  Y. Zeng, T. Zhang, H. T. Fan, W. Y. Fu, G. Y. Lu, Y. M. Sui, H. B. Yang, J. Phys. Chem. C 2009, 113, 19000.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CrsrzJ&md5=a62903645928149969a309d1f3bebbd7CAS |

[33]  F. L. Meng, N. N. Hou, S. Ge, B. Sun, Z. Jin, W. Shen, L. T. Kong, Z. Guo, Y. F. Sun, H. Wu, C. Wang, M. Q. Li, J. Alloys Compd. 2015, 626, 124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVygt7vI&md5=4d2f0bd9a1d6154000d1ddc7e2729cdaCAS |

[34]  X. M. Xu, P. L. Zhao, D. W. Wang, P. Sun, L. You, Y. F. Sun, X. S. Liang, F. M. Liu, H. Chen, G. Y. Lu, Sens. Actuators B 2013, 176, 405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVKlsQ%3D%3D&md5=430c9508ed9e1252fc40042d4a063444CAS |

[35]  Y. Zhang, X. L. He, J. P. Li, H. G. Zhang, X. G. Gao, Sens. Actuators B 2007, 128, 293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yltL%2FN&md5=de6800e1d9eafa51487184310aed413cCAS |

[36]  D. P. Volanti, A. A. Felix, M. O. Orlandi, G. Whitfield, D. J. Yang, E. Longo, H. L. Tuller, J. A. Varela, Adv. Funct. Mater. 2013, 23, 1759.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Squ77K&md5=49aeb871af67c8ae665e92542d346303CAS |

[37]  Y. Yang, C. G. Tian, J. C. Wang, Li. Su, K. Y. Shi, W. Zhou, H. G. Fu, Nanoscale 2014, 6, 7369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVansrzN&md5=4af0f5dfabee24cf9a4677a4baeb0936CAS | 24872200PubMed |

[38]  Y. Q. Liang, Z. D. Cui, S. L. Zhu, Z. Y. Li, X. J. Yang, Y. J. Chen, J. M. Ma, Nanoscale 2013, 5, 10916.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OrsLbO&md5=5495eb007afbdb03a7ba6a757fae5dcaCAS | 24056921PubMed |

[39]  L. Q. Liu, K. Q. Hong, T. T. Hu, M. X. Xu, J. Alloys Compd. 2012, 511, 195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlakt7jF&md5=3e28c20efe394a014750d474abd77423CAS |

[40]  D. Q. Gao, G. J. Yang, J. Y. Li, J. Zhang, J. J. Zhang, D. S. Xue, J. Phys. Chem. C 2010, 114, 18347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KhtrrO&md5=4520d48c58f976d72732b94973bdf084CAS |

[41]  Y. L. Shen, M. L. Guo, X. H. Xia, G. S. Shao, Acta Mater. 2015, 85, 122.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlt1eh&md5=323c141cf1fee78049842c1c997ec871CAS |

[42]  S. Sunkara, V. K. Vendra, J. H. Kim, T. Druffel, M. K. Sunkara, Catal. Today 2013, 199, 27.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFWjsLs%3D&md5=b3294a6f0fcbf7ecfdc2d94b2c864c8cCAS |

[43]  K. Nakaoka, J. Ueyama, K. Ogura, J. Electrochem. Soc. 2004, 151, C661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlelu7c%3D&md5=72ceb7d27f9dacbe44c5a8e32ce24930CAS |

[44]  F. Bayansal, B. Şahin, M. Yüksel, N. Biyikli, H. A. Çetinkara, H. S. Güder, J. Alloys Compd. 2013, 566, 78.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFCht78%3D&md5=8ba6e6b4ee6bb5faa7aad83ceef2015cCAS |

[45]  C. Yang, F. Xiao, J. D. Wang, X. T. Su, Sens. Actuators B 2015, 207, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVers7bF&md5=1bbff6559a3abcf8bfc1498a12193ceeCAS |

[46]  M. R. Alenezi, S. J. Henley, N. G. Emerson, S. R. P. Silva, Nanoscale 2014, 6, 235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2hs7vF&md5=c5ec6e2ec7269ec94edbc8054aef1949CAS | 24186303PubMed |

[47]  R. J. Zou, G. J. He, K. B. Xu, Q. Liu, Z. Y. Zhang, J. Q. Hu, J. Mater. Chem. A 2013, 1, 8445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVCqurjI&md5=aff0e42b81fdeb905f3c4c431cfc8438CAS |

[48]  X. W. Li, W. Feng, Y. Xiao, P. Sun, X. L. Hu, K. Shimanoe, G. Y. Lu, N. Yamazoe, RSC Adv. 2014, 4, 28005.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSgtr3E&md5=4fbae6fbac6aba47ff780f902c8d98efCAS |

[49]  L. L. Wang, T. Fei, Z. Lou, T. Zhang, ACS Appl. Mater. Interfaces 2011, 3, 4689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaku7nK&md5=4b7e9a10675284aedb64b8bfc29d165eCAS |

[50]  S. Park, S. An, H. Ko, C. Jin, C. Lee, ACS Appl. Mater. Interfaces 2012, 4, 3650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Gisrs%3D&md5=f61c681d99a533c4a547b172ce5f2dc7CAS | 22746969PubMed |