Synthesis and Oxidative Desulfurization of PV-Functionalized Imidazole-2-thiones: Easy Access to P-Functional Ionic Liquids*
Paresh Kumar Majhi A , Gregor Schnakenburg A , Anthony J. ArduengoA Institut fur Anorganische Chemie der Rheinischen Friedrich-Wilhelms-Universitat Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
B Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487-0336, USA.
C Corresponding authors. Email: aj@ajarduengo.net; r.streubel@uni-bonn.de
Australian Journal of Chemistry 68(8) 1282-1292 https://doi.org/10.1071/CH14726
Submitted: 23 December 2014 Accepted: 13 January 2015 Published: 24 March 2015
Abstract
Selective synthesis of 4-phosphanylated imidazole-2-thiones 2d, 3a,b(b′),c(c′),d were achieved using a backbone lithiation and phosphanylation reaction protocol. The 4-phosphanylated-imidazole-2-thiones 3b(b′),c(c′) were subjected to a oxidation/phosphanylation/oxidation reaction sequence to access C4/5-bis(phosphanoyl)-substituted imidazole-2-thiones 7b,c. Oxidative desulfurization of phosphanylated imidazole-2-thiones 2d, 4a,d, and 7b,c with hydrogen peroxide afforded the first examples of room temperature imidazolium ionic liquids 8d, 9a,d, and 10b,c respectively, possessing backbone P-substituents. To study the effect of the counter anion on the physical properties, imidazolium salts with counter anions such as Cl–, BF4–, PF6–, Tf2N–, and TfO– have been prepared by exchanging the counter anion of the obtained imidazolium hydrogen sulfates 8a,d and 14b with appropriate alkali or alkaline earth metal salts. All target products were characterised by various spectroscopic and spectrometric methods and by a single-crystal X-ray structure study in the case of 5a.
References
[1] T. Welton, Chem. Rev. 1999, 99, 2071.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1artrw%3D&md5=6428bc59ec769c89d68fcd9660b6980aCAS | 11849019PubMed |
[2] N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVWhsQ%3D%3D&md5=571032653c651efcaf251ee33eaea429CAS | 18197338PubMed |
[3] (a) M. Haumann, A. Riisager, Chem. Rev. 2008, 108, 1474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVOmtrc%3D&md5=915c067659caedbe47850c80f1b6d417CAS | 18355093PubMed |
(b) V. I. Parvulescu, C. Hardacre, Chem. Rev. 2007, 107, 2615.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. A. P. Martins, C. P. Frizzo, D. N. Moreira, N. Zanatta, H. G. Bonacorso, Chem. Rev. 2008, 108, 2015.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. Miao, T. H. Chan, Acc. Chem. Res. 2006, 39, 897.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Kumar, M. K. Muthyala, S. Choudhary, R. K. Tiwari, K. Parang, J. Org. Chem. 2012, 77, 9391.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) A. Bosmann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz, P. Wasserscheid, Chem. Commun. 2001, 2494.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38vnvVyrtA%3D%3D&md5=e45aae414277661cef5afafabd15c851CAS |
(b) X. Han, D. W. Armstrong, Acc. Chem. Res. 2007, 40, 1079.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Zhao, S. Xia, P. Ma, J. Chem. Technol. Biotechnol. 2005, 80, 1089.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J. H. Davis, R. D. Rogers, Environ. Sci. Technol. 2002, 36, 2523.
| Crossref | GoogleScholarGoogle Scholar |
(e) I. A. Shkrob, T. W. Marin, M. P. Jensen, Ind. Eng. Chem. Res. 2014, 53, 3641.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. Forte, A. Sachse, M. Maes, A. Galarneau, D. De Vos, RSC Adv. 2014, 4, 1045.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. Dhanalakshmi, P. S. T. Sai, A. R. Balakrishnan, Ind. Eng. Chem. Res. 2013, 52, 16396.
| Crossref | GoogleScholarGoogle Scholar |
(h) J. G. Huddleston, R. D. Rogers, Chem. Commun. 1998, 1765.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) P. Hapiot, C. Lagrost, Chem. Rev. 2008, 108, 2238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVKitLc%3D&md5=1ed9564bc15655257b2e9dd99b1d57f3CAS | 18564878PubMed |
(b) D. R. MacFarlane, M. Forsyth, P. C. Howlett, J. M. Pringle, J. Sun, G. Annat, W. Neil, E. I. Izgorodina, Acc. Chem. Res. 2007, 40, 1165.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. V. Fedorov, A. A. Kornyshev, Chem. Rev. 2014, 114, 2978.
| Crossref | GoogleScholarGoogle Scholar |
(d) B. D. B. Aaronson, S. C. S. Lai, P. R. Unwin, Langmuir 2014, 30, 1915.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) E. Binetti, A. Panniello, R. Tommasi, A. Agostiano, S. Fantini, M. L. Curri, M. Striccoli, J. Phys. Chem. C 2013, 117, 12923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptlCntL0%3D&md5=6b78a89074b286bd1e4e4d193a4ac384CAS |
(b) T. Ichikawa, M. Yoshio, A. Hamasaki, T. Mukai, H. Ohno, T. Kato, J. Am. Chem. Soc. 2007, 129, 10662.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Biswas, C. N. R. Rao, Chem. – Eur. J. 2007, 13, 6123.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Wang, H. Yang, J. Am. Chem. Soc. 2005, 127, 5316.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y.-J. Zhu, W.-W. Wang, R.-J. Qi, X.-L. Hu, Angew. Chem. 2004, 116, 1434.[Angew. Chem. Int. Ed. 2004, 43, 1410].
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) F. van Rantwijk, R. A. Sheldon, Chem. Rev. 2007, 107, 2757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlaksrY%3D&md5=8b01f4c2a36f57e37d47cac00a03af98CAS | 17564484PubMed |
(b) K. Zhuo, H. Ren, Y. Wei, Y. Chen, J. Ma, J. Chem. Eng. Data 2014, 59, 640.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) C. Ye, W. Liu, Y. Chen, L. Yu, Chem. Commun. 2001, 2244.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslChu7w%3D&md5=a67e66f7d119f8f1e3559ca19aac3317CAS |
(b) T. L. Greaves, C. J. Drummond, Chem. Rev. 2008, 108, 206.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Schneider, T. Hawkins, M. Rosander, G. Vaghjiani, S. Chambreau, G. Drake, Energy Fuels 2008, 22, 2871.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Zhao, Chem. Eng. Commun. 2006, 193, 1660.
| Crossref | GoogleScholarGoogle Scholar |
[9] J. J. H. Davis, Chem. Lett. 2004, 33, 1072.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslSrtrY%3D&md5=ed09be2addd8a5bf6c8418f681bfaf32CAS |
[10] A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J. J. H. Davis, R. D. Rogers, Chem. Commun. 2001, 135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFWr&md5=9d0a11813f924741d831e8fc8275efeeCAS |
[11] H. Li, P. S. Bhadury, B. Song, S. Yang, RSC Adv. 2012, 2, 12525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12rsb3F&md5=3a6ffe843c3588da8e2ff513bf3ded72CAS |
[12] S.-g. Lee, Chem. Commun. 2006, 1049.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFCksLg%3D&md5=c51817d79f3a1fd2433e412eae943319CAS |
[13] D. Li, F. Shi, J. Peng, S. Guo, Y. Deng, J. Org. Chem. 2004, 69, 3582.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1aitrg%3D&md5=9ba0f607356246ab713ae1145f0a8407CAS | 15132578PubMed |
[14] S. A. Forsyth, U. Frohlich, P. Goodrich, H. Q. N. Gunaratne, C. Hardacre, A. McKeown, K. R. Seddon, New J. Chem. 2010, 34, 723.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVWrtL4%3D&md5=0f0251ecf406bbee2b2e220cc210dc6fCAS |
[15] L. C. Branco, J. N. Rosa, J. J. Moura Ramos, C. A. M. Afonso, Chem. – Eur. J. 2002, 8, 3671.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmslequ70%3D&md5=6348e8db303004bb61ed30e1d0e63a3fCAS | 12203294PubMed |
[16] Z. Mu, W. Liu, S. Zhang, F. Zhou, Chem. Lett. 2004, 33, 524.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFels74%3D&md5=2e23bb6dd41a13636e20336adf7d80a5CAS |
[17] See p. 167/table 23 in R. Panico, W. H. Powell, J. C. Richter, A Guide to IUPAC Nomenclature of Organic Compounds 1993 (Blackwell Science Ltd: Oxford).
[18] S. Sauerbrey, P. K. Majhi, G. Schnakenburg, A. J. Arduengo, R. Streubel, Dalton Trans. 2012, 41, 5368.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVansro%3D&md5=14a031ea46e0f09a18ebe9a89f906c36CAS | 22395782PubMed |
[19] P. K. Majhi, S. Sauerbrey, A. Leiendecker, G. Schnakenburg, A. J. Arduengo, R. Streubel, Dalton Trans. 2013, 42, 13126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlSitLzL&md5=de5934527028d162dccd5ef1bbba6185CAS | 23880962PubMed |
[20] P. K. Majhi, S. Sauerbrey, G. Schnakenburg, A. J. Arduengo, R. Streubel, Inorg. Chem. 2012, 51, 10408.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtleisLbI&md5=9499a8cbf640d49071e9567dc6f7ed23CAS | 22967360PubMed |
[21] J. Ruiz, A. F. Mesa, Chem. – Eur. J. 2012, 18, 4485.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFGit78%3D&md5=80d34b9d057714b45eedd6130d1520dfCAS | 22407582PubMed |
[22] J. Ruiz, A. F. Mesa, Chem. – Eur. J. 2014, 20, 102.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVOhsbbP&md5=e1e271c99ef4c9800e98c543a4b3c908CAS | 24285356PubMed |
[23] B. L. Benac, E. M. Burgess, A. J. Arduengo, Org. Synth. 1986, 64, 92.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXjt12htw%3D%3D&md5=51133727c4311fda3c4d3498dd847e20CAS |
[24] D. J. Williams, S. K. Tata, M. C. Koether, V. L. H. Bevilaqua, B. E. Huck, R. E. Hart, Chem. Educ. 2002, 7, 167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt12hsrg%3D&md5=b27550ee0210af35ed7a8c2b8ec1104aCAS |
[25] H. R. Kim, I. G. Jung, K. Yoo, K. Jang, E. S. Lee, J. Yun, S. U. Son, Chem. Commun. 2010, 46, 758.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1yjtQ%3D%3D&md5=d98896792e421ee3d70f99a8dfc97943CAS |
[26] P. W. Codding, K. A. Kerr, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1978, 34, 3785.
| Crossref | GoogleScholarGoogle Scholar |
[27] K. Al-Farhan, J. Crystallogr. Spectrosc. Res. 1992, 22, 687.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xms1ajtro%3D&md5=102b63a1c2745f2def4387094349ce13CAS |
[28] Y. M. Loksha, A. A. El-Barbary, M. A. El-Badawi, C. Nielsen, E. B. Pedersen, Synthesis 2004, 116.
| 1:CAS:528:DC%2BD2cXlvV2jsw%3D%3D&md5=be5f5ddd66911595526a014172ed2cf2CAS |
[29] J. H. Chang, K. W. Lee, D. H. Nam, W. S. Kim, H. Shin, Org. Process Res. Dev. 2002, 6, 674.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFalsb8%3D&md5=be4b596cc5789011b894c91dcf697592CAS |
[30] G. Morel, Synlett 2003, 2167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFOhsrk%3D&md5=076b64bab8f5bab9afb3d5ce746d0c09CAS |
[31] A. J. Arduengo, J. R. Goerlich, R. Krafczyk, W. J. Marshall, Angew. Chem. 1998, 110, 2062.
| Crossref | GoogleScholarGoogle Scholar |
[32] D. M. Wolfe, P. R. Schreiner, Eur. J. Org. Chem. 2007, 2825.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVGktLk%3D&md5=f4db39adf8b6aa988e79f4b30be3cf6bCAS |
[33] Ashutosh, N. D. Pandey, J. K. Mehrotra, Heterocycles 1979, 12, 1339.
| 1:CAS:528:DyaL3cXns1Cjtg%3D%3D&md5=c436cde1794ba1ef175992d2eb401d8aCAS |
[34] R. G. Jones, J. Am. Chem. Soc. 1952, 74, 1085.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXmsF2rug%3D%3D&md5=acea0af5eeb0eac3efdd80ac58592b8cCAS |
[35] H. W. Wanzlick, H. J. Schönherr, Angew. Chem. 1968, 80, 154.
| Crossref | GoogleScholarGoogle Scholar |
[36] (a) G. M. Sheldrick, SHELXS97: Program for the Solution of Crystal Structure 1997 (University of Goettingen: Goettingen).
(b) G. M. Sheldrick, SHELXL97: Program for the Refinement of Crystal Structure 1997 (University of Goettingen: Goettingen).