Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Preparation of Uniform Poly (Acrylamide-co-DVB) Microspheres in a Low Toxicity Solvent by Dispersion Polymerization

Jie He A B , Xiang’an Yue A , Yu Sun A , Xuegang Feng A and Xin Tan A
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Petroleum Engineering, Ministry of Education, China University of Petroleum, Beijing 102249, China.

B Corresponding author. Email: hechuanlie520@163.com

Australian Journal of Chemistry 68(8) 1276-1281 https://doi.org/10.1071/CH14670
Submitted: 23 November 2014  Accepted: 13 January 2015   Published: 31 March 2015

Abstract

Uniform poly (acrylamide-co-DVB) microspheres (DVB = divinylbenzene) with number-average diameter varying from 1.65 to 2.86 µm and polydispersity index from 1.011 to 1.176 were prepared in a low toxicity solvent, i.e. ethanol/water mixtures, by dispersion polymerization using octylphenol polyoxyethylene (10) ether as the stabilizer and 2,2′-azobisisobutyronitrile as the initiator. The parameters, such as solvent composition, initiator concentration, and monomer composition, which influence both the product yield and morphology, were investigated by gravimetry and scanning electron microscopy. The results indicate that for the formation of uniform microspheres, there exists a threshold for each parameter. At the maximum threshold, blobs would apparently appear on the surface of the microspheres. Below or above the thresholds would result in doublet- or triplet-shaped particles, flocs, or a mixture of both. The yield of the uniform microspheres could be up to ~35 % by changing the parameters moderately within the threshold range.


References

[1]  H. Ni, H. Kawaguchi, T. Endo, Colloid Polym. Sci. 2007, 285, 819.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVajsro%3D&md5=8be8b74b543400b0ab3260efb7d45514CAS |

[2]  K. S. Soppirnath, T. M. Aminabhavi, Eur. J. Pharm. Biopharm. 2002, 53, 87.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFCq&md5=3abaf6a765c782c95e984b34f706776aCAS | 11777756PubMed |

[3]  G. Fundueanu, M. Constantin, M. Ascenzi, Acta Biomater. 2009, 5, 363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVamtbs%3D&md5=269ec2adfb81e23a1903336f07e6d7bcCAS | 18723416PubMed |

[4]  M. Sairam, V. B. Babu, B. V. K. Naidu, Int. J. Pharm. 2006, 320, 131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFCqtLg%3D&md5=c1e93b49c03a0be385613d1326ad16b3CAS | 16766148PubMed |

[5]  D. Kuckling, H.-J. P. Adler, K.-F. Arndt, L. Ling, W. D. Habicher, Macromol. Chem. Phys. 2000, 201, 273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVOhsbo%3D&md5=6869dce1e18f32bc1116097427332378CAS |

[6]  Z. Hua, M. Lin, J. Guo, F. Xu, Z. Li, M. Li, J. Pet. Sci. Eng. 2013, 105, 70.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFems70%3D&md5=85a938b7579064c8f1b749341a1360d2CAS |

[7]  S. G. Kumbar, K. S. Soppimath, T. M. Aminabhavi, J. Appl. Polym. Sci. 2003, 87, 1525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOktQ%3D%3D&md5=29b52fd94929f8361193502fa02550b8CAS |

[8]  G. Li, G. Zhang, L. Wang, Energy Fuels 2013, 27, 6632.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CmsrbM&md5=05e78c221edfaa663dfff7a9769e575bCAS |

[9]  G. H. Ma, H. Sone, S. Omi, Macromolecules 2004, 37, 2954.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1yisbo%3D&md5=e6cfc1f2d0a021003f1f4ea06814a6d7CAS |

[10]  C. Yao, G. Lei, L. Li, X. Gao, J. Appl. Polym. Sci. 2013, 127, 3910.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsVGlurk%3D&md5=a4f25ce8797c27db8ca32e5008704ec0CAS |

[11]  S. Kiatkamjornwong, N. Siwarungson, A. Nganbunsri, J. Appl. Polym. Sci. 1999, 73, 2273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlOntL8%3D&md5=ce8a78eeeb1e7784fb322395fc9c9cbfCAS |

[12]  Y. Zhang, L. Fan, P. Zhao, L. Zhang, H. Chen, Compos. Interfaces 2008, 15, 747.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2gtro%3D&md5=cd62a032ae2af6416308c50c693faffeCAS |

[13]  M. S. Cho, K. J. Yoon, B. K. Song, J. Appl. Polym. Sci. 2002, 83, 1397.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlKrtbg%3D&md5=b7a2a64cfd23e791eb3f8dc6d570023eCAS |

[14]  B. Ray, B. M. Mandal, Langmuir 1997, 13, 2191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitVOlsL8%3D&md5=f2f4a3db795f710f26ef032c1e89a73cCAS |

[15]  W. Zhou, Q. Qu, W. Yu, Z. An, ACS Macro Lett. 2014, 3, 1220.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFSqu7zL&md5=73bb8adcda60601e18e46e0c564fa65eCAS |

[16]  Y. Xu, Y. Li, X. Cao, Q. Chen, Z. An, Polym. Chem. 2014, 5, 6244.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFChs73N&md5=967e3039ad5dab1c2d415c0a935808f3CAS |

[17]  J. M. Jin, S. Yang, S. E. Shim, S. Choe, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFeitL3M&md5=6e96424623c0aa544c9764c4f2194d9cCAS |

[18]  J. M. Jin, S. Yang, S. T. Han, S. Choe, J. Ind. Eng. Chem. 2006, 12, 268.
         | 1:CAS:528:DC%2BD28Xjt1Kiuro%3D&md5=236c4ef5a3a21f2edb4b2cd490173bf6CAS |

[19]  G. Liu, X. Yang, Y. Wang, Polym. Int. 2007, 56, 905.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVSiu74%3D&md5=ffdc4a62e5483953655a99586c10d05cCAS |

[20]  C. Yao, G. Lei, X. Gao, L. Li, J. Appl. Polym. Sci. 2013, 130, 1124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFWntLg%3D&md5=0952469de329c95fc7dd234876401f8dCAS |

[21]  C. Yao, G. Lei, L. Li, X. Gao, Energy Fuels 2012, 26, 5092.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVKlur0%3D&md5=c5b277aa28a1b0590574a1a0cf64a341CAS |

[22]  X. Wang, Q. Yue, B. Gao, X. Si, X. Sun, S. Zhang, J. Appl. Polym. Sci. 2011, 120, 1496.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCjsrg%3D&md5=d3c9b7011dbba10204e544acea685e86CAS |

[23]  Q. Yan, Y. Bai, Z. Meng, W. Yang, J. Phys. Chem. B 2008, 112, 6914.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVGgsr8%3D&md5=b004706c25c2fc5b89c81dd1a52b585cCAS | 18489142PubMed |

[24]  X. Z. Kong, X. L. Gu, X. Zhu, L. Zhang, Macromol. Rapid Commun. 2009, 30, 909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1elt70%3D&md5=eb1ef6c0d59d9962e864f6cfe8af9147CAS | 21706547PubMed |

[25]  S. Shen, E. D. Sudol, M. S. El-Aasser, J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 1087.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVGrtr0%3D&md5=7fd5853fc01d155c4c8e0312bbfeed22CAS |

[26]  S. Shen, E. D. Sudol, M. S. El-Aasser, J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 1393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisFGnsb4%3D&md5=a6d710ed578c8c22045acdd3ebe701b7CAS |