SUPPLEMENTARY MATERIAL

Synthesis and Oxidative Desulfurization of P(V)-Functionalized Imidazole-2-thiones: Easy Access to P-Functional Ionic Liquids

Paresh Kumar Majhi,^A Gregor Schnakenburg,^A Anthony J. Arduengo III,^{B,C} and Rainer Streubel^{A,C}

^AInstitut fur Anorganische Chemie der Rheinischen Friedrich-Wilhelms-Universitat Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.

^BDepartment of Chemistry, University of Alabama, Tuscaloosa, AL 35487-0336, USA.

^CCorresponding authors. Email: aj@ajarduengo.net; r.streubel@uni-bonn.de

Figure S1: ¹H NMR spectrum of **1d** in CDCl₃ (300.1 MHz, 25 °C)

Figure S2: ${}^{13}C{}^{1}H$ NMR spectrum of **1d** in CDCl₃ (75.5 MHz, 25 °C)

Figure S3: ¹H NMR spectrum of **2d** in CDCl₃ (300.1 MHz, 25 °C)

Figure S4: ¹³C{¹H} NMR spectrum of **2d** in CDCl₃ (75.5 MHz, 25 °C)

Figure S5: ³¹P{¹H} NMR spectrum of **2d** in CDCl₃ (121.5 MHz, 25 °C)

Figure S6: ¹H NMR spectrum of **3a** in CD_2Cl_2 (300.1 MHz, 25 °C)

Figure S7: ¹³C{¹H} NMR spectrum of **3a** in CD₂Cl₂ (75.5 MHz, 25 °C)

Figure S8: ${}^{31}P{}^{1}H$ NMR spectrum of **3a** in CD₂Cl₂ (121.5 MHz, 25 °C)

Figure S9: ¹H NMR spectrum of **3b(b')** in CDCl₃ (300.1 MHz, 25 °C)

Figure S10: ¹³C{¹H} NMR spectrum of **3b(b')** in CDCl₃ (75.5 MHz, 25 °C)

Figure S11: ³¹P{¹H} NMR spectrum of **3b(b')** in CDCl₃ (121.5 MHz, 25 °C)

Figure S12: ${}^{31}P{}^{1}H$ NMR spectrum of **3c(c')** in thf (121.5 MHz, 25 °C)

Figure S13: ${}^{31}P{}^{1}H$ NMR spectrum of **3d** in thf (121.5 MHz, 25 °C)

Figure S14: ¹H NMR spectrum of **4a** in CDCl₃ (300.1 MHz, 25 °C)

Figure S15: ¹³C{¹H} NMR spectrum of **4a** in CDCl₃ (75.5 MHz, 25 °C)

Figure S16: ${}^{31}P{}^{1}H$ NMR spectrum of **4a** in thf (121.5 MHz, 25 °C)

Figure S17: ¹H NMR spectrum of 4b(b') in CDCl₃ (300.1 MHz, 25 °C)

Figure S18: ¹³C{¹H} NMR spectrum of **4b(b')** in CDCl₃ (75.5 MHz, 25 °C)

Figure S19: ³¹P{¹H} NMR spectrum of **4b(b')** in thf (121.5 MHz, 25 °C)

Figure S20: ${}^{31}P{}^{1}H$ NMR spectrum of **4c(c')** in CDCl₃ (121.5 MHz, 25 °C)

Figure S21: ${}^{31}P{}^{1}H$ NMR spectrum of **4d** in CDCl₃ (121.5 MHz, 25 °C)

Figure S22: ¹H NMR spectrum of **5a** in CDCl₃ (300.1 MHz, 25 °C)

Figure S23: ¹³C{¹H} NMR spectrum of **5a** in CDCl₃ (75.5 MHz, 25 °C)

Figure S24: ${}^{31}P{}^{1}H$ NMR spectrum of **5a** in CDCl₃ (121.5 MHz, 25 °C)

Figure S25: ${}^{31}P{}^{1}H$ NMR spectrum of **6b(b')** in thf (121.5 MHz, 25 °C)

Figure S26: ${}^{31}P{}^{1}H$ NMR spectrum of **6c(c')** in thf (121.5 MHz, 25 °C)

Figure S27: ¹H NMR spectrum of **7b** in CDCl₃ (300.1 MHz, 25 °C)

Figure S28: ¹³C{¹H} NMR spectrum of **7b** in CDCl₃ (75.5 MHz, 25 °C)

Figure S29: ${}^{31}P{}^{1}H$ NMR spectrum of **7b** in thf (121.5 MHz, 25 °C)

Figure S30: ¹H NMR spectrum of **7c** in CDCl₃ (300.1 MHz, 25 °C)

Figure S31: ¹³C{¹H} NMR spectrum of **7c** in CDCl₃ (75.5 MHz, 25 °C)

Figure S32: ${}^{31}P{}^{1}H$ NMR spectrum of **7c** in CDCl₃ (121.5 MHz, 25 °C)

Figure S33: ¹H NMR spectrum of **8d** in CDCl₃ (300.1 MHz, 25 °C)

Figure S34: ¹³C{¹H} NMR spectrum of **8d** in CDCl₃ (75.5 MHz, 25 °C)

Figure S35: ${}^{31}P{}^{1}H$ NMR spectrum of **8d** in CDCl₃ (121.5 MHz, 25 °C)

Figure S36: ¹H NMR spectrum of **9a** in CDCl₃ (300.1 MHz, 25 °C)

Figure S37: ¹³C{¹H} NMR spectrum of **9a** in CDCl₃ (75.5 MHz, 25 °C)

Figure S38: ${}^{31}P{}^{1}H$ NMR spectrum of **9a** in CDCl₃ (121.5 MHz, 25 °C)

Figure S39: ¹H NMR spectrum of **9d** in CDCl₃ (300.1 MHz, 25 °C)

Figure S40: ¹³C{¹H} NMR spectrum of **9d** in CDCl₃ (75.5 MHz, 25 °C)

Figure S41: ${}^{31}P{}^{1}H$ NMR spectrum of **9d** in CDCl₃ (121.5 MHz, 25 °C)

Figure S42: ¹H NMR spectrum of **10b** in DMSO-d6 (300.1 MHz, 25 °C)

Figure S43: ¹³C{¹H} NMR spectrum of **10b** in DMSO-d6 (75.5 MHz, 25 °C)

Figure S44: ³¹P{¹H} NMR spectrum of **10b** in DMSO-d6 (121.5 MHz, 25 °C)

Figure S45: ¹H NMR spectrum of **10c** in CD₂Cl₂ (300.1 MHz, 25 °C)

Figure S47: ¹H NMR spectrum of **11a** in DMSO-d6 (300.1 MHz, 25 °C)

Figure S48: ¹³C{¹H} NMR spectrum of **11a** in DMSO-d6 (75.5 MHz, 25 °C)

Figure S49: ${}^{31}P{}^{1}H$ NMR spectrum of **11a** in DMSO-d6 (121.5 MHz, 25 °C)

Figure S50: ¹H NMR spectrum of **12a** in d mso-d6 (300.1 MHz, 25 °C)

Figure S51: $^{13}C{^{1}H}$ NMR spectrum of **12a** in DMSO-d6 (75.5 MHz, 25 °C)

Figure S53: ¹H NMR spectrum of **13d** in CDCl₃ (300.1 MHz, 25 °C)

Figure S54: ${}^{13}C{}^{1}H$ NMR spectrum of **13d** in CDCl₃ (75.5 MHz, 25 °C)

Figure S55: ${}^{31}P{}^{1}H$ NMR spectrum of **13d** in CDCl₃ (121.5 MHz, 25 °C)

Figure S56: ¹H NMR spectrum of **15b** in DMSO-d6 (300.1 MHz, 25 °C)

Figure S57: ¹³C{¹H} NMR spectrum of **15b** in DMSO-d6 (75.5 MHz, 25 °C)

Figure S58: ³¹P{¹H} NMR spectrum of **15b** in DMSO-d6 (121.5 MHz, 25 °C)

Figure S59: ¹H NMR spectrum of **16b** in CD₂Cl₂ (300.1 MHz, 25 °C)

Figure S60: ¹³C{¹H} NMR spectrum of **16b** in CD₂Cl₂ (75.5 MHz, 25 °C)

Figure S61: ³¹P{¹H} NMR spectrum of **16b** in CD₂Cl₂ (121.5 MHz, 25 °C)

Figure S62: ¹H NMR spectrum of **17b** in CD_2Cl_2 (300.1 MHz, 25 °C)

Figure S63: ¹³C{¹H} NMR spectrum of **17b** in CD₂Cl₂ (75.5 MHz, 25 °C)

Figure S64: ${}^{31}P{}^{1}H$ NMR spectrum of **17b** in CD₂Cl₂ (121.5 MHz, 25 °C)

Table S1: Crystal data and structure refinement for 5a

Device Type	Bruker X8-KappaApexII	
Empirical formula	$C_{15}H_{31}N_4PS_2$	
Moiety formula	$C_{15}H_{31}N_4PS_2$	
Formula weight	362.53	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P 2_1/c$	
Unit cell dimensions	a = 15.3458(6) Å	$\alpha = 90^{\circ}$
	b = 8.7341(3) Å	$\beta = 117.549(2)^{\circ}$
	c = 16.5299(6) Å	$\gamma = 90^{\circ}$
Volume	1964.32(12) Å ³	
Z	4	
Calculated density	1.226 mg/m^3	
Absorption coefficient	0.355 mm ⁻¹	
F(000)	784	
Crystal size	$0.24 \times 0.20 \times 0.08 \text{ mm}$	
Theta range for data collection	3.53 to 28.00°	
Limiting indices	$\text{-}20 \leq h \leq 20, \text{-}11 \leq k \leq 11, \text{-}21 \leq l \leq 21$	
Reflections collected / unique	54312 / 4681 [R(int) = 0.0322]	
Completeness to theta $= 28.00$	98.8 %	
Absorption correction	Empirical	
Max. and min. transmission	0.9071 and 0.8259	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4681 / 2 / 206	
Goodness-of-fit on F ²	1.066	
Final R indices [I>2sigma(I)]	$R_1 = 0.0262, wR_2 = 0.0657$	
R indices (all data)	$R_1 = 0.0314, wR_2 = 0.0688$	
Largest diff. peak and hole	0.365 and -0.256 e.Å ⁻³	