Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Carbon-Supported Spinel Nanoparticle MnCo2O4 as a Cathode Catalyst towards Oxygen Reduction Reaction in Dual-Chamber Microbial Fuel Cell

Dengping Hu A , Guangyao Zhang B , Juan Wang A C and Qin Zhong A
+ Author Affiliations
- Author Affiliations

A Department of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

B School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

C Corresponding author. Email: wangjuan304@mail.njust.edu.cn

Australian Journal of Chemistry 68(6) 987-994 https://doi.org/10.1071/CH14516
Submitted: 8 July 2014  Accepted: 5 October 2014   Published: 22 December 2014

Abstract

The poor kinetics of oxygen reduction reaction (ORR) in neutral media and ambient temperature limit the performance of microbial fuel cells (MFCs). So higher-performing, low-cost oxygen reduction catalysts play a key role in power output. Through direct nanoparticle nucleation and growth on carbon black, a nanocomposite of manganese cobaltite and carbon black (in situ-MnCo2O4/C) was synthesized via a facile hydrothermal method. Subsequently, the in situ-MnCo2O4/C samples were characterized. The results show that the MnCo2O4 nanoparticles with a crystalline spinel structure are well dispersed on carbon black. Electrochemical measurements reveal that in situ-MnCo2O4/C demonstrates excellent ORR catalytic activity, which may account for the synergetic coupling effect between MnCo2O4 and carbon black. The ORR on as-prepared in situ-MnCo2O4/C hybrid mainly favours a direct 4-electron reaction pathway in alkaline solution. Moreover, in situ-MnCo2O4/C was used as an alternative catalyst for ORR in dual-chamber MFC. The obtained maximum power density is 545 mW m–2, which is far higher than that of the plain cathode (Pmax = 214 mW m–2) and slightly lower than that of commercial Pt/C catalyst (Pmax = 689 mW m–2). This study implies that in situ-MnCo2O4/C nanocomposite is an efficient and cost-effective cathode catalyst for practical MFC application.


References

[1]  B. E. Logan, Nat. Rev. Microbiol. 2009, 7, 375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsl2gu7g%3D&md5=5f6eef889923aeb5c7d648d42394090cCAS | 19330018PubMed |

[2]  H. Liu, R. Ramnarayanan, B. E. Logan, Environ. Sci. Technol. 2004, 38, 2281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVKksb0%3D&md5=a9741ba32999846ea2b662635b8d346fCAS | 15112835PubMed |

[3]  B. Z. Xie, W. B. Dong, B. J. Liu, H. Liu, J. Chem. Technol. Biotechnol. 2014, 89, 448.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKrtLnI&md5=7a1d7b4e63d7cb992cc6a1ea3975174aCAS |

[4]  F. Zhang, K. S. Brastad, Z. He, Environ. Sci. Technol. 2011, 45, 6690.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFCntL8%3D&md5=e5f8ea1fdcd19e9060ed88895ac4f2c1CAS | 21751820PubMed |

[5]  X. X. Cao, X. Huang, P. Liang, K. Xiao, Y. J. Zhou, X. Y. Zhang, B. E. Logan, Environ. Sci. Technol. 2009, 43, 7148.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFWlu7o%3D&md5=4afc55c85818d7dbc1514352491f80b7CAS |

[6]  L. P. Huang, J. W. Chen, X. Quan, F. L. Yang, Bioprocess Biosyst. Eng. 2010, 33, 937.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGgsLrK&md5=2163af1506021a6aa621f39702622d9aCAS |

[7]  J. C. Thrash, J. I. V. Trump, K. A. Weber, E. Miller, L. A. Achenbach, J. Coates, Environ. Sci. Technol. 2007, 41, 1740.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyns7o%3D&md5=ec08a452930cdc91ad8ca94082170ebfCAS | 17396669PubMed |

[8]  P. Liang, X. Huang, M. Z. Fan, X. X. Cao, C. Wang, Appl. Microbiol. Biotechnol. 2007, 77, 551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12ktL3E&md5=c220425daa458c5411bfbfc67a4b47f0CAS | 17899067PubMed |

[9]  S. Pandit, S. Ghosh, M. M. Ghangrekar, D. Das, Int. J. Hydrogen Energy 2012, 37, 9383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1elsbs%3D&md5=0128b253f396e738ba5282d0a2d23e1cCAS |

[10]  L. Y. Feng, Y. G. Chen, L. Chen, ACS Nano 2011, 5, 9611.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOksrvF&md5=c586944188aed8b37fa6a34e078cff57CAS |

[11]  F. Harnisch, U. Schröder, Chem. Soc. Rev. 2010, 39, 4433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlShtbrP&md5=ac948a6ca76885bbafe04e47b9db5b15CAS | 20830322PubMed |

[12]  S. A. Cheng, H. Liu, B. E. Logan, Electrochem. Commun. 2006, 8, 489.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslKltb4%3D&md5=fd302d348aadd0f98744f2908aa884cfCAS |

[13]  Y. Qiao, S. J. Bao, C. M. Li, Energy Environ. Sci. 2010, 3, 544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVait7k%3D&md5=ccde2aa1a9d42e703197d7a3aa15ad56CAS |

[14]  M. Lu, L. Guo, S. Kharkwal, H. N. Wu, H. Y. Ng, S. F. Y. Li, J. Power Sources 2013, 221, 381.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVGjtr7O&md5=5998ec58ea536e182e6df19d73e6b195CAS |

[15]  H. M. Wang, Z. C. Wu, A. Plaseied, P. Jenkins, L. Simpson, C. Engtrakul, Z. Y. Ren, J. Power Sources 2011, 196, 7465.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1ektrY%3D&md5=f258baf6c09db92b29257c2603ad9279CAS |

[16]  F. Harnisch, S. Wirth, U. Schroder, Electrochem. Commun. 2009, 11, 2253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlOrt7zM&md5=d0f3cc54ec281c5455cf1baaa43ea679CAS |

[17]  H. L. Sun, J. Chem. Technol. Biotechnol. 2012, 87, 1167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xitlynsr4%3D&md5=e711d00591e485422cab3fd923c19f58CAS |

[18]  M. G. Hosseini, I. Ahadzadeh, J. Power Sources 2012, 220, 292.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2gurzO&md5=c5b737bcf576202126288183fcab5200CAS |

[19]  L. X. Zhang, C. S. Liu, L. Zhuang, W. S. Li, S. G. Zhou, J. T. Zhang, Biosens. Bioelectron. 2009, 24, 2825.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVWgsrw%3D&md5=5114e6b6c4cd26c4e815a3d97e6d7421CAS |

[20]  G. J. Du, X. G. Liu, Y. Zong, T. S. A. Hor, A. S. Yu, Z. L. Liu, Nanoscale 2013, 5, 4657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslWlsLg%3D&md5=1988e2ccb27179632312184df3c59135CAS |

[21]  M. Mahmoud, T. A. G. Allah, K. M. E. Khatib, F. E. Gohary, Bioresour. Technol. 2011, 102, 10459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKrt7vJ&md5=c17bc4c8fd87e3f6258f32ea08a1cb5dCAS | 21944282PubMed |

[22]  Y. Y. Liang, Y. G. Li, H. L. Wang, H. J. Dai, J. Am. Chem. Soc. 2013, 135, 2013.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CitLc%3D&md5=3d731351b32559f2d6d6249a5181302cCAS |

[23]  X. M. Ge, Y. Y. Liu, F. W. T. Goh, T. S. A. Hor, Y. Zong, P. Xiao, Z. Zhang, S. H. Lim, B. Li, X. Wang, Z. L. Liu, ACS Appl. Mater. Interfaces 2014, 6, 12684.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1SqsL7N&md5=26260b6cc2aa30b0ad47f8f1410770d0CAS |

[24]  S. Khilari, S. Pandit, D. Das, D. Pradhan, Biosens. Bioelectron. 2014, 54, 534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOhsrs%3D&md5=66e0f5b8d8223c925db271977b8ab1f9CAS | 24333931PubMed |

[25]  E. Mshoperi, R. Fogel, J. Limson, Electrochim. Acta 2014, 128, 311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2nsrjJ&md5=5e94e2925d0e207d4afbae1a4c63d0a7CAS |

[26]  K. C. Kil, G. Y. Kim, C. W. Cho, M. D. Lin, K. Kim, K. M. Jeong, J. Lee, U. Paik, Electrochim. Acta 2013, 111, 946.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCqsbnN&md5=fc3f6f26b5a6fe666daeba2eea2f234dCAS |

[27]  Z. S. Wu, S. B. Yang, Y. Sun, K. Parvez, X. L. Feng, J. Am. Chem. Soc. 2012, 134, 9082.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFCltbg%3D&md5=3469c049cc7c5ec622bc4529bf1e0fe6CAS | 22624986PubMed |

[28]  H. Cai, J. Wang, Y. F. Bu, Q. Zhong, J. Chem. Technol. Biotechnol. 2013, 88, 623.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGgtr7L&md5=27b02f425d1c479540efcb5732f4159eCAS |

[29]  L. B. Kong, C. Lu, M. C. Liu, Y. C. Luo, L. Kang, X. H. Lin, F. C. Walsh, Electrochim. Acta 2014, 115, 22.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVykt70%3D&md5=7c764d94b8b53af2c34cb7020940f3e3CAS |

[30]  Y. T. Zhang, L. Q. Luo, Z. Zhang, Y. P. Ding, S. Liu, D. M. Dong, H. B. Zhao, Y. G. Chen, J. Mater. Chem. B 2014, 2, 529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFOksQ%3D%3D&md5=396f564cf6bff0636f62724e3fbbf400CAS |

[31]  R. M. Rojas, E. Vila, O. Garcia, J.-L. M. Vidalesb, J. Mater. Chem. 1994, 4, 1635.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhslSnsLY%3D&md5=890c2d67510bb230acdc09e1137e2fc3CAS |

[32]  Y. Feng, N. N. Feng, Y. Z. Wei, G. Y. Zhang, RSC Adv. 2014, 4, 7933.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlagsrY%3D&md5=51e5b7d0d4f17621d6f641744266948aCAS |

[33]  M. Vikkisk, I. Kruusenberg, U. Joost, E. Shulga, I. Kink, K. Tammeveski, Appl. Catal., B 2014, 147, 369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOjur7M&md5=db3f813498ce2a19596219981c8d8e6fCAS |

[34]  Y. J. Zhang, K. Fugane, T. Mori, L. Niu, J. H. Ye, J. Mater. Chem. 2012, 22, 6575.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Gitrg%3D&md5=6045f8374227ada066758214c44cf7dbCAS |

[35]  Y. Y. Liang, Y. G. Li, H. L. Wang, J. G. Zhou, J. Wang, T. Regier, H. J. Dai, Nat. Mater. 2011, 10, 780.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvV2isb0%3D&md5=161668e41c5013984d5d740c34fe87c5CAS |

[36]  G. F. Liu, K. Dürr, R. Puchta, F. K. Heinemann, R. V. Eldik, I. I. Burmazović, Dalton Trans. 2009, 6292.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsVamt7k%3D&md5=769eb2077704615523d1d46a1d6e4752CAS | 19655061PubMed |

[37]  J. F. Li, S. L. Xiong, X. W. Li, Y. T. Qian, Nanoscale 2013, 5, 2045.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXis1Chtb0%3D&md5=f55d2c5df6c14f7123291730be4b8ef4CAS |

[38]  J. J. Duan, Y. Zheng, S. Chen, Y. H. Tang, M. Jaroniec, S. Z. Qiao, Chem. Commun. 2013, 49, 7705.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1elsLvI&md5=fd92b80842b06914d53009179227d325CAS |

[39]  Q. Wen, S. Y. Wang, J. Yan, L. J. Cong, Z. C. Pan, Y. M. Ren, Z. J. Fan, J. Power Sources 2012, 216, 187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOgsrrK&md5=44323c38929d267bef09e0100f7cbb45CAS |

[40]  D.-W. Wang, D. S. Sun, Energy Environ. Sci. 2014, 7, 576.
         | Crossref | GoogleScholarGoogle Scholar |