Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Catalytic Olefin Hydroalkoxylation by Nano Particles of Pollucite

Sara Zamanian A and Ali Nemati Kharat A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University College of Science, University of Tehran, Tehran 13145-1357, Iran.

B Corresponding author. Email: alnema@khayam.ut.ac.ir

Australian Journal of Chemistry 68(6) 981-986 https://doi.org/10.1071/CH14492
Submitted: 11 August 2014  Accepted: 5 October 2014   Published: 1 December 2014

Abstract

The catalytic hydroalkoxylation of α,β-unsaturated esters, nitriles, and ethers with aliphatic and aromatic alcohols over pollucite using thermal and microwave-assisted methods was investigated. To study the effect of the alcohol structures on the mechanism of the hydroalkoxylation reaction, different alcohols, such as methanol to butanol, cyclohexanol, phenol, and 2-ethylhexanol were used. The activities of pollucite, in contrast to other basic solids, were scarcely affected by the presence of air and moisture. The correlation between alcohol acidity and reaction activity is discussed. The prepared pollucite was characterized by X‐ray diffraction, volumetric nitrogen adsorption surface area analysis, and CO2 temperature‐programmed desorption. Scanning electron microscopy analysis revealed that the size of the modified nano catalyst particles was under 40 nm.


References

[1]  M. B. Smith, J. March, March’s Advanced Organic Chemistry 2001 (Academic Press: John Wiley & Sons: New York, NY).

[2]  K. Maeda, H. Shinokubo, K. Oshima, J. Org. Chem. 1996, 61, 6770.
         | 1:CAS:528:DyaK28Xls1SlsLY%3D&md5=8c367c9f6f71db2c521f76b51642a596CAS | 11667565PubMed |

[3]  G. J. Hatchings, C. P. Nicolaides, M. S. Scurrel, Catal. Today 1992, 15, 23.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  K. P. de Jong, W. Bosch, T. D. B. Morgan, Stud. Surf. Sci. Catal. 1995, 96, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xos1Wr&md5=aa14f30960642d78d689c76b73befae1CAS |

[5]  S. Gao, J. B. Moffat, Catal. Lett. 1996, 42, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntFCktbk%3D&md5=7b4fe7daf90e6366dfeb3c32bb5ed1f7CAS |

[6]  F. Shi, H. Xiong, Y. Gu, S. Guo, Y. Deng, Chem. Commun. 2003, 1054.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFGrsbs%3D&md5=8f8e9b493dde371e8d59c865bff3fe59CAS |

[7]  W. Kiatkittipong, K. Yoothongkham, C. Chaisuk, P. Praserthdam, S. Goto, S. Assabumrungrat, Catal. Lett. 2009, 128, 154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrtbjF&md5=fd0c96fbd6436ef543c9dd13be454c27CAS |

[8]  W. J. Piel, Fuel Reformulation 1994, 4, 28.
         | 1:CAS:528:DyaK2cXmtVymtb8%3D&md5=21607be35116c66391796160ef6c94d2CAS |

[9]  H. L. Brockwell, P. R. Sarathy, R. Trotta, Hydrocarbon Process. 1991, 70, 133.
         | 1:CAS:528:DyaK3MXmvVeis7s%3D&md5=775fbbdb157230d9cefcd0061c9d90a7CAS |

[10]  H. M. Sheldrake, C. Jamieson, J. W. Burton, Angew. Chem., Int. Ed. 2006, 45, 7199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cltb7I&md5=70e1d9d24c4dd767bcb765c81e9f02eaCAS |

[11]  D. C. Rosenfeld, S. Shekhar, A. Takemiya, M. Utsunomiya, J. F. Hartwig, Org. Lett. 2006, 8, 4179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVCiu78%3D&md5=ae69887dd6dfd34fbb2992b596271e83CAS | 16956181PubMed |

[12]  S. I. Miller, J. Org. Chem. 1956, 21, 247.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XotFyqtQ%3D%3D&md5=e4a1ea1dfc6bedff3cbd98ce958ff19aCAS |

[13]  D. F. Shellhamer, H. K. Forberg, M. P. Herrick, S. J. Rodrigued, S. Sanabria, N. N. Trager, V. L. Heasley, Trends Org. Chem. 2008, 12, 39.
         | 1:CAS:528:DC%2BD1MXotVShtbs%3D&md5=4685509f18ffb5e873a651f8093b2fdaCAS |

[14]  Z. Li, J. Zhang, C. Brouwer, C. G. Yang, N. W. Reich, C. He, Org. Lett. 2006, 8, 4175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVCiu74%3D&md5=d9d0bcba1db529a46ce035d11aeb0a14CAS | 16956180PubMed |

[15]  P. Lemechko, F. Grau, S. Antoniotti, E. Dunach, Tetrahedron Lett. 2007, 48, 5731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotV2rsL8%3D&md5=5ec25009a5ab4f619fc7bdec42fd6b88CAS |

[16]  D. S. Noyce, K. E. DeBruin, J. Am. Chem. Soc. 1968, 90, 372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXksVeiu7Y%3D&md5=94c9425dc559e0f5ffc1bcfae43e31e7CAS |

[17]  L. R. Fedor, N. C. De, S. K. Gurwara, J. Am. Chem. Soc. 1973, 95, 2905.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktVCnuro%3D&md5=3ef68cfa57a5a478117f4ae738e9fc24CAS | 4694716PubMed |

[18]  J. L. Jensen, D. J. Carre, J. Org. Chem. 1974, 39, 2103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXks1aksbk%3D&md5=118cd0b479e8f01c411b77102a29dc38CAS |

[19]  R. P. Bell, J. Preston, J. Chem. Soc. 1962, 1166.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XktVSlsLk%3D&md5=987b3011d2b7696674d8d6f2df30426eCAS |

[20]  I. C. Stewart, R. G. Bergman, F. D. Toste, J. Am. Chem. Soc. 2003, 125, 8696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1eku7w%3D&md5=d18943091a553a1b170ae9c1704deca0CAS | 12862443PubMed |

[21]  P. B. Kisanga, P. Ilankumaran, B. M. Fetterly, J. G. Verkade, J. Org. Chem. 2002, 67, 3555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtF2gtbc%3D&md5=85bdce77eb92c45af7acd8e43b8b6484CAS | 12027665PubMed |

[22]  F. Collignon, G. Poncelet, J. Catal. 2001, 202, 68.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls12gtrk%3D&md5=938b2346976eaba598291e0ed758e0a9CAS |

[23]  L. Coulombel, E. Dunach, Green Chem. 2004, 6, 499.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslykurw%3D&md5=59ebae278437149af48e7732d57dd44fCAS |

[24]  B. Wang, Y. Gu, L. Yang, J. Suo, O. Kenichi, Catal. Lett. 2004, 96, 71.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVSit7o%3D&md5=1820113f1980e53d9c7ccd7c45314566CAS |

[25]  J. R. Chamberlain, U. S. Patent 5 008 136 1991.

[26]  J. D. Unruh, C. Christi, U. S. Patent 5 081 285 1992.

[27]  B. T. Keen, U. S. Patent 4 948 915 1990.

[28]  C. Munro-Leighton, E. D. Blue, T. B. Gunnoe, J. Am. Chem. Soc. 2006, 128, 1446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvV2rug%3D%3D&md5=1483afd6daf367e348e3c64247355205CAS | 16448104PubMed |

[29]  C. Munro-Leighton, S. A. Delp, E. D. Blue, T. B. Gunnoe, Organometallics 2007, 26, 1483.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCgsbk%3D&md5=323fbe43a19877d70f91fc6a43fed4e2CAS |

[30]  R. Corberan, S. Marrot, N. Dellus, N. Merceron-Saffon, T. Kato, E. Peris, A. Baceiredo, Organometallics 2009, 28, 326.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2ns7zN&md5=a6c5c20c962fad374e7cb2ce6ec6468bCAS |

[31]  T. J. Gallagher, J. Chem. Soc., Chem. Commun. 1984, 1554.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtlWrtbw%3D&md5=d8b471a00826f564fae5b1326692317aCAS |

[32]  C. G. Yang, C. He, J. Am. Chem. Soc. 2005, 127, 6966.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsVGgsbs%3D&md5=858d1dee0c7e8d2ab30ca51ef7a1dbcaCAS | 15884936PubMed |

[33]  I. Kamiya, H. Tsunoyama, T. Tsukuda, H. Sakurai, Chem. Lett. 2007, 36, 646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslSrtrY%3D&md5=fdf11bf1348d537ebc22640904ae65c6CAS |

[34]  X. Zhang, A. Corma, Dalton Trans. 2008, 397.
         | Crossref | GoogleScholarGoogle Scholar | 18411849PubMed |

[35]  F. Volz, N. Krause, Org. Biomol. Chem. 2007, 5, 1519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsV2jtL0%3D&md5=4dd7e13ae8c24a18d95e8082d30e219dCAS | 17571178PubMed |

[36]  T. Hirai, A. Hamasaki, A. Nakamura, M. Tokunaga, Org. Lett. 2009, 11, 5510.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlymtbvL&md5=f08588f27cb8329b50df00c350308731CAS | 19899752PubMed |

[37]  C. S. Yi, S. Y. Yun, Z. He, Organometallics 2003, 22, 3031.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVaitLo%3D&md5=3301253cf5e6747bbc7de2751a801d78CAS |

[38]  K. Hori, H. Kitagawa, A. Miyoshi, T. Ohta, I. Furukawa, Chem. Lett. 1998, 27, 1083.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  T. Kawamoto, S. Hirabayashi, X. X. Guo, T. Nishimura, T. Hayashi, Chem. Commun. 2009, 3528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFaru7g%3D&md5=4b07ab07bc5ab69ad0b1aca4ca2640e0CAS |

[40]  T. Hosokawa, T. Shinohara, Y. Ooka, S. I. Murahashi, Chem. Lett. 1989, 18, 2001.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  K. J. Miller, T. T. Kitagawa, Organometallics 2001, 20, 4403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslamu7c%3D&md5=3ebf22d0530dae21412c6e11bf57d8a5CAS |

[42]  Y. Matsukawa, J. Mizukado, H. Quan, M. Tamura, A. Sekiya, Angew. Chem., Int. Ed. Engl. 2005, 44, 1128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtl2rtrk%3D&md5=215b4c82477bebea9dfb5a29c6e9ee2fCAS |

[43]  K. M. Gligorich, M. J. Schultz, M. S. Sigman, J. Am. Chem. Soc. 2006, 128, 2794.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCnur4%3D&md5=613d1db4f81fdf53fe1c88aa4e244a7fCAS | 16506746PubMed |

[44]  Y. Zhang, M. S. Sigman, Org. Lett. 2006, 8, 5557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFehurzF&md5=79e7a7f3f41704fbc1f9a0c8bed90be8CAS | 17107071PubMed |

[45]  N. T. Patil, L. M. Lutete, H. Wu, N. K. Pahadi, I. D. Gridnev, Y. Yamamoto, J. Org. Chem. 2006, 71, 4270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFyhsrY%3D&md5=61c8381050008d3117377ec6e6386898CAS | 16709071PubMed |

[46]  H. Qian, X. Han, R. A. Widenhoefer, J. Am. Chem. Soc. 2004, 126, 9536.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1Kqsrg%3D&md5=1895995510a25e748158f17121aa16b0CAS | 15291546PubMed |

[47]  Y. Oe, T. Ohta, Y. Ito, Synlett 2005, 179.
         | 1:CAS:528:DC%2BD2MXjvFOisw%3D%3D&md5=19cfcef498c010aa8968e21025b40289CAS |

[48]  B. A. Messerle, K. Q. Vuong, Organometallics 2007, 26, 3031.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslOlsbo%3D&md5=cbc7910732e004e9ca7cc64b15fba375CAS |

[49]  X. Yu, S. Seo, T. J. Marks, J. Am. Chem. Soc. 2007, 129, 7244.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1ykt7w%3D&md5=fdf7b21fa77eb6cc0d4beb014672b370CAS | 17506562PubMed |

[50]  R. S. Karinen, J. A. Linnekoski, A. O. I. Krause, Catal. Lett. 2001, 76, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVemsr0%3D&md5=40a3c9b0134d8100c793610041c1f17cCAS |

[51]  L. Degirmenci, N. Oktar, G. Dogu, Ind. Eng. Chem. Res. 2009, 48, 2566.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVejs7k%3D&md5=47a6ba0050f76248c52f539c842ae6a1CAS |

[52]  C. J. Schmidle, R. C. Mansfield, Ind. Eng. Chem. 1952, 44, 1388.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXht1Shsg%3D%3D&md5=05e07e505ab48febcf55e69a3a94a556CAS |

[53]  M. J. Astle, J. A. Zaslowsky, Ind. Eng. Chem. 1952, 44, 2867.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXmtFygsA%3D%3D&md5=580f076a682cd22267e4b3049e2d4105CAS |

[54]  C. S. H. Chen, J. Org. Chem. 1962, 27, 1920.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xks1ahs7Y%3D&md5=f7e38e95d8da0c50988d4e81472401aaCAS |

[55]  N. V. Vlasenko, Y. N. Kochkin, A. M. Puziy, J. Mol. Catal. Chem. 2006, 253, 192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt12ksbg%3D&md5=2374cb349b527ac269eea8db052f4d6bCAS |

[56]  F. Collignon, G. Poncelet, J. Catal. 2001, 202, 68.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls12gtrk%3D&md5=938b2346976eaba598291e0ed758e0a9CAS |

[57]  S. Radhakrishnan, G. Thoelen, J. Franken, J. Degreve, C. E. A. Kirschhock, J. A. Martens, ChemCatChem 2013, 5, 576.
         | 1:CAS:528:DC%2BC38Xhslaqu7nJ&md5=2fa40c3aefbba7849586be4ebda6bef1CAS |

[58]  H. Kabashima, H. Hattori, Catal. Today 1998, 44, 277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1Kmurg%3D&md5=b634e15486a387be89b08ea371d872faCAS |

[59]  E. Angelescu, O. D. Pavel, M. Che, R. Bîrjega, G. Constentin, Catal. Commun. 2004, 5, 647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1yqtbg%3D&md5=2f73e5a36bf005d2af3fc0d5d25eeb56CAS |

[60]  O. D. Pavel, R. Bîrjega, M. Che, G. Costentin, E. Angelescu, S. Serban, Catal. Commun. 2008, 9, 1974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlCksb0%3D&md5=ae2322a2e2786ac8082d04257c719e4cCAS |

[61]  O. D. Pavel, R. Zăvoianu, R. Bîrjega, E. Angelescu, Mater. Res. Bull. 2010, 45, 1106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlyqsrY%3D&md5=c1c8da19d9a64ed4c5c6ca6fb918afe5CAS |

[62]  O. D. Pavel, R. Zăvoianu, R. Bîrjega, E. Angelescu, Catal. Commun. 2011, 12, 845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1KjurY%3D&md5=edd1f4b4012714a5a7714ef8f8c9eeb7CAS |

[63]  J. S. Valente, H. Pfeiffer, E. Lima, J. Prince, J. Flores, J. Catal. 2011, 279, 196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFWmtLo%3D&md5=7186631bea59813e02d6534e28584aabCAS |

[64]  F. Teodorescu, A. M. Pălăduţă, O. D. Pavel, Mater. Res. Bull. 2013, 48, 2055.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlCntbo%3D&md5=0f8bf954bfa7e6cb62e02713ccc62af1CAS |

[65]  J. M. Adams, D. E. Clement, S. H. Graham, Clays Clay Miner. 1983, 31, 129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktVGitr4%3D&md5=67965b97e7f3f01990f8d46f270dff3cCAS |

[66]  J. P. Wolfe, S. L. Buchwald, J. Org. Chem. 2000, 65, 1144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1Kgtg%3D%3D&md5=85899fb9cd940e78f16d5ee7bda7818bCAS | 10814066PubMed |

[67]  A. Kondoh, H. Takami, H. Yorimitsu, K. Oshima, J. Org. Chem. 2005, 70, 6468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVCgsro%3D&md5=9e229678b229cc9ee78394f600152f1cCAS | 16050711PubMed |

[68]  M. T. Honaker, J. Sandefur, J. L. Hargett, A. L. McDaniel, R. N. Salvatore, Tetrahedron Lett. 2003, 44, 8373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVOru7k%3D&md5=5c64fb9cb0dc18f8cd4270b31054ec9dCAS |

[69]  Y.-J. Wu, H. He, Synlett 2003, 12, 1789.
         | Crossref | GoogleScholarGoogle Scholar |

[70]  E. Maerten, F. Hassouna, S. Couve-Bonnaire, A. Mortreux, J.-F. Carpentier, Y. Castanet, Synlett 2003, 12, 1874.

[71]  J. P. Parrish, B. Sudaresan, K. W. Jung, Synth. Commun. 1999, 29, 4423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotFalsbs%3D&md5=e075b3b520c82d7f86cdfc554541e529CAS |

[72]  S. Zamanian, A. Nemati Kharat, Chin. J. Catal. 2014, 35, 264.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslSksbg%3D&md5=a0e2aa76ae3bf80e2c1821bdf6f9589eCAS |

[73]  U. Sharma, T. Naveen, A. Maji, S. Manna, D. Maiti, Angew. Chem. 2013, 125, 12901.
         | Crossref | GoogleScholarGoogle Scholar |

[74]  H. Kwiecien, M. Smist, M. Kowalewska, Curr. Org. Synth. 2012, 9, 529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12nu7%2FE&md5=ba61f9fa024b3911822665b08a617c3cCAS |

[75]  W. Zeng, W. Wu, H. Jiang, L. Huang, Y. Sun, Z. Chen, X. Wei, Chem. Commun. 2013, 49, 6611.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVWmtb3J&md5=a7ee092bb07430ef872683fb4f57f46eCAS |

[76]  T. Kumar, S. M. Mobin, I. N. N. Namboothiri, Tetrahedron 2013, 69, 4964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1Ogur8%3D&md5=e2057ec2c7bb964e7a523c6b857f73d1CAS |

[77]  L. P. J. Burton, B. Rouge, U. S. Patent 4 659 863 1987.

[78]  H. A. Bruson, U. S. Patent 2 280 791 1942.

[79]  C. H. Fisher, C. E. Rehberg, U. S. Patent 2 445 925 1948.

[80]  J. F. Brazdil, in Ullmann's Encyclopedia of Industrial Chemistry 1991, Vol. 1, pp. 352–355 (Wiley-VCH: Weinheim).