Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Determination of Trace Arsenic Content in Commercial Crispbread by Hydride Generation Inductively Coupled Plasma Optical Emission Spectrometry

Maja Welna A B
+ Author Affiliations
- Author Affiliations

A Wroclaw University of Technology, Chemistry Department, Analytical Chemistry Division, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.

B Corresponding author: Email: maja.welna@pwr.wroc.pl

Australian Journal of Chemistry 68(3) 441-446 https://doi.org/10.1071/CH14281
Submitted: 5 May 2014  Accepted: 7 June 2014   Published: 1 September 2014

Abstract

Methodology for the determination of total As in crispbread by hydride generation inductively coupled plasma optical emission spectrometry (HG–ICP–OES) was evaluated. The effect of pre-reduction reagents before the HG reaction under conditions of real samples was investigated. Sonication (15 min, 25°C) of samples with aqua regia allowed complete release of As species in solutions. Arsenic hydride was generated in the reaction with NaBH4 (1.0 % (m/v)) after the pre-reduction of AsV to AsIII with ascorbic acid (1.5 % (m/v)) and KI (0.5 % (m/v)) in 3 mol L–1 HCl. Detection limits (LODs) of 0.46 (AsIII) and 0.49 (AsV) μg L–1 were assessed. The accuracy of the method was confirmed by analysis with a certificate reference material and recovery test. Various crispbreads (wheat, rye, corn, rice) were analysed with the developed procedure and As content varied between 0.027 and 0.219 μg g–1, being the highest in the rice samples.


References

[1]  S. Kapaj, H. Peterson, K. Liber, P. Bhattacharya, J. Environ. Sci. Health, Part A 2006, 41, 2399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSjtrvI&md5=b42f668e4e22738be3755eabc2c37582CAS |

[2]  M. A. Rahman, H. Hasegawa, Sci. Total Environ. 2011, 409, 4645.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GnsbfN&md5=f5dbbe2dc99fc08cebdb9635e7728873CAS | 21899878PubMed |

[3]  R. Hernández-Martínez, I. Navarro-Blasco, Food Control 2013, 30, 423.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  T. Llorente-Mirandes, J. Calderón, F. Centrich, R. Rubio, J. F. López-Sánchez, Food Chem. 2014, 147, 377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsleqs7jP&md5=486dfc852cfb7ca7589505f92a953691CAS | 24206733PubMed |

[5]  B. Škrbić, A. Onjia, Food Control 2007, 18, 338.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  K. Dewettinck, F. Van Bockstaele, B. Kühne, D. Van de Walle, T. M. Courtens, X. Gellynck, J. Cereal Sci. 2008, 48, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVarsLrO&md5=7e1e28484102b9fb5b1980e251812964CAS |

[7]  B. Demirözü, İ. Saldamli, A. Gürsel, F. Uçak, F. Çetinyokuş, N. Yüzbaşi, J. Cereal Sci. 2003, 37, 171.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  I. Jawad, S. H. Allafaji, Aust. J. Basic Appl. Sci. 2012, 6, 88.
         | 1:CAS:528:DC%2BC3sXmvFGnuw%3D%3D&md5=8a9dc66bb0fe1d6f6ad92d26f8e871dfCAS |

[9]  M. Grembecka, A. Kusiuk, P. Szefer, Bromatol. Chem. Toksykol. 2007, 4, 319.

[10]  A. Winiarska-Mieczan, M. Kwiecień, Acta Sci. Pol., Technol. Aliment. 2011, 10, 487.
         | 1:CAS:528:DC%2BC38Xhs1equ7g%3D&md5=0d7983b2543087e3fe26994e6889847dCAS |

[11]  C. Galinha, M. C. Freitas, A. M. G. Pacheco, J. Radioanal. Nucl. Chem. 2013, 297, 221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFelsr3N&md5=d7944d98673f797a2e7938b0b57ca8ffCAS |

[12]  R. B. Khouzam, R. Lobinski, P. Pohl, Anal. Methods 2011, 3, 2115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yhs7jN&md5=5d7ecb24fab2ea7cf7defc0d9ab862fcCAS |

[13]  R. B. Khouzam, P. Pohl, B. Al Ayoubi, F. Jaber, R. Lobinski, Pure Appl. Chem. 2012, 84, 181.
         | 1:CAS:528:DC%2BC38Xos1aqt7s%3D&md5=746eb2aa06389da99a7a03da4c1bb3e4CAS |

[14]  O. Muñoz, J. M. Bastias, A. Macarena, A. Morales, C. Orellana, R. Rebolledo, D. Velez, Food Chem. Toxicol. 2005, 43, 1647.
         | Crossref | GoogleScholarGoogle Scholar | 15975702PubMed |

[15]  N. Jalbani, T. G. Kazi, M. K. Jamali, B. M. Arain, H. I. Afridi, A. Baloch, J. Food Compos. Anal. 2007, 20, 226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVyiurk%3D&md5=d18980e32ee5a1f659f53cd1f749b9caCAS |

[16]  M. Harmankaya, M. M. Özcan, S. Gezgin, Environ. Monit. Assess. 2012, 184, 5511.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOntbbL&md5=deae876b5fb530c172b1f9b5fbc7f478CAS | 21947929PubMed |

[17]  R. B. Khouzam, P. Pohl, R. Lobinski, Talanta 2011, 86, 425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaqt7jO&md5=08975611d838c4b1d6b10bb8efab4723CAS | 22063561PubMed |

[18]  T. Llorente-Mirandes, J. Calderón, J. F. López-Sánchez, F. Centrich, R. Rubio, Pure Appl. Chem. 2012, 84, 225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1aqtLs%3D&md5=cdd7a502d706b3f6e90cb041a7636c42CAS |

[19]  G.-X. Sun, P. N. Williams, Y.-G. Zhu, C. Deacon, A.-M. Carey, A. Raab, J. Feldmann, A. A. Meharg, Environ. Int. 2009, 35, 473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVOnsrY%3D&md5=f0f9a19cfd801ef0dd7b0948a5faf7d3CAS | 18775567PubMed |

[20]  G. Chen, T. Chen, Talanta 2014, 119, 202.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltVCltA%3D%3D&md5=d58612e16d86cf83199cae41098947a9CAS | 24401405PubMed |

[21]  W. N. L. dos Santos, D. D. Cavalcante, S. M. Macedo, J. S. Nogueira, E. G. P. da Silva, Food Anal. Methods 2013, 6, 1128.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  R. R. Rasmussen, Y. Qian, J. J. Sloth, Anal. Bioanal. Chem. 2013, 405, 7851.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlCmsr0%3D&md5=50375a0af78a7f03dbdfe299cfa40e79CAS | 23604416PubMed |

[23]  P. Pohl, TrAc, Trends Anal. Chem. 2004, 23, 87.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVCnsQ%3D%3D&md5=0d9adebd0c8afa8ae2c3127e1dc62b23CAS |

[24]  J.-H. Huang, G. Ilgen, P. Fecher, J. Anal. At. Spectrom. 2010, 25, 800.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFeqs70%3D&md5=cb4941073133b9330ec5e55d041615a7CAS |

[25]  Y.-G. Zhu, G.-X. Sun, M. Lei, M. Teng, Y.-X. Liu, N.-C. Chen, L.-H. Wang, A. M. Carey, C. Deacon, A. Raab, A. A. Meharg, P. N. Williams, Environ. Sci. Technol. 2008, 42, 5008.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFWgsb4%3D&md5=309085aaaebf1c83fdca6a0edaaaddc3CAS | 18678041PubMed |

[26]  M. Welna, J. Lasowska, W. Zyrnicki, J. Braz. Chem. Soc. 2011, 22, 1164.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOntrg%3D&md5=42f4f550fda8a5bb6d4536fca439dbbaCAS |

[27]  M. Welna, A. Szymczycha-Madeja, P. Pohl, Food Anal. Methods 2014, 7, 1016.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  P. Cava-Montesinos, M. L. Cervera, A. Pastor, M. de la Guardia, Talanta 2004, 62, 173.
         | Crossref | GoogleScholarGoogle Scholar | 18969278PubMed |

[29]  P. Qiu, Ch. Ai, L. Lin, J. Wu, F. Ye, Microchem. J. 2007, 87, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOmsbvO&md5=5c02d1246f9f4241ce52b8f0b971237fCAS |