Plasma-Fabricated Surface Plasmon Resonance Chip for Biosensing
Ram P. Gandhiraman A E , Gowri Manickam A , Laura Kerr A , Chandra K. Dixit B , Colin Doyle C , David E. Williams D F and Stephen Daniels AA Biomedical Diagnostics Institute (BDI), Dublin City University, Glasnevin, Dublin-9, Ireland.
B School of Biotechnology, Dublin City University, Dublin-9, Ireland.
C Research Centre for Surface and Materials Science, Department of Chemical and Materials Engineering, University of Auckland, Auckland 1142, New Zealand.
D MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand.
E Current address: NASA Ames Research Center, Mail stop 229–1, Moffett Field, CA, USA.
F Corresponding author. Email: david.williams@auckland.ac.nz
Australian Journal of Chemistry 68(3) 447-452 https://doi.org/10.1071/CH14324
Submitted: 21 May 2014 Accepted: 11 June 2014 Published: 1 September 2014
Abstract
This work reports the fabrication of a biosensing chip surface designed for plasmonic detection, and features a layer of noble metal nanoparticles encapsulated as a sandwich within amine-functionalized polysiloxane layers formed by plasma-enhanced chemical vapour deposition. The collective surface plasmon resonance (CSPR) phenomenon characteristic of a dense particle layer is demonstrated for encapsulated gold nanoparticles of different diameters. Biomolecular immobilization is carried out through the amine functional groups that are part of the encapsulating layer. The detection of biomolecular binding events at the sensor surface is demonstrated both by a shift in resonance wavelength at constant angle of incidence using SPR-enhanced spectroscopic ellipsometry and by detecting the angular shift in resonance in a commercial SPR instrument (Biacore®). Taken with other results, this work shows how a complete SPR chip can be assembled by a rapid sequence of operations in a single plasma chamber.
References
[1] A. Merkoçi, Biosens. Bioelectron. 2010, 26, 1164.| Crossref | GoogleScholarGoogle Scholar | 20678915PubMed |
[2] L. M. Zanoli, R. D. Agata, G. Spoto, Anal. Bioanal. Chem. 2012, 402, 1759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOjs7bI&md5=405098cfa84954de318a9106948cf35aCAS | 21866403PubMed |
[3] E. Hutter, M.-P. Pileni, J. Phys. Chem. B 2003, 107, 6497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFKntL4%3D&md5=54999d183136a41e21e756db1712579eCAS |
[4] M.-C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFGlur0%3D&md5=4d225be2daf92d0dc9ac5bdb7fdef99eCAS | 14719978PubMed |
[5] M. Grzelczak, J. Perez-Juste, P. Mulvaney, L. M. Marzan, Chem. Soc. Rev. 2008, 37, 1783.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOitb3K&md5=f7090be4b4638afb06f160103d3cdda1CAS | 18762828PubMed |
[6] A. J. Haes, R. P. V. Duyne, Expert Rev. Mol. Diagn. 2004, 4, 527.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlSnt7o%3D&md5=15edf032a7647db82fc95fa259db101aCAS | 15225100PubMed |
[7] K. A. Willets, R. P. V. Duyne, Annu. Rev. Phys. Chem. 2007, 58, 267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslSitrg%3D&md5=cbd854dac6cb526337e50306941589f9CAS | 17067281PubMed |
[8] S. Ko, T. J. Park, H.-S. Kim, J.-H. Kim, Y.-J. Cho, Biosens. Bioelectron. 2009, 24, 2592.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVylsbw%3D&md5=456b97e7a52169411488efda1b6aff20CAS | 19243930PubMed |
[9] A.-L. Morel, R.-M. Volmant, C. Méthivier, J.-M. Krafft, S. Boujday, C.-M. Pradier, Colloids Surf., B 2010, 81, 304.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKgsbjI&md5=f5b783d70806921c0c9de6331ab4b941CAS |
[10] C. Coyle, R. P. Gandiraman, V. Gubala, N. C. H. Le, C. Charlton, P. Swift, S. Daniels, D. E. Williams, Plasma Processes Polym. 2012, 9, 28.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVWls7fM&md5=637f7fb4ffbe9a1610b9deebd4cf4b0cCAS |
[11] C. Volcke, R. P. Gandhiraman, V. Gubala, J. Raj, T. Cummins, G. Fonder, R. I. Nooney, Z. Mekhalif, G. Herzog, S. Daniels, D. W. M. Arrigan, A. A. Cafolla, D. E. Williams, Biosens. Bioelectron. 2010, 25, 1875.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVCqtLg%3D&md5=f0707c7c88abf58da6d2668439dae304CAS | 20117925PubMed |
[12] L. L. Zhao, K. L. Kelly, G. C. Schatz, J. Phys. Chem. B 2003, 107, 7343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlWgsrs%3D&md5=f16c8394a1f8fd7fe80fa950e418b1fcCAS |
[13] C.-S. Chiu, H.-Y. Chen, C.-F. Hsiao, M.-Hs. Lin, S. Gwo, J. Phys. Chem. C 2013, 117, 2442.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFehsbo%3D&md5=d4f77dfedf1f90dcf6b7763ed44b6a24CAS |
[14] C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, S. Gwo, J. Am. Chem. Soc. 2008, 130, 824.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlymuw%3D%3D&md5=6865932778ddae5b4f908a54662188c7CAS | 18163631PubMed |
[15] K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, Nano Lett. 2003, 3, 1087.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslGqtr0%3D&md5=91c90876f701a04d7cc74692fe186eebCAS |
[16] H. Portalès, N. Pinna, M.-P. Pileni, J. Phys. Chem. A 2009, 113, 4094.
| Crossref | GoogleScholarGoogle Scholar | 19278219PubMed |
[17] V. Gubala, R. P. Gandhiraman, C. Volcke, C. Doyle, C. Coyle, B. James, S. Daniels, D. E. Williams, Analyst (Cambridge, U.K.) 2010, 135, 1375.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFSlsrw%3D&md5=86db315c0f61a6b9ae9f6c11fc5df314CAS |
[18] R. P. Gandhiraman, C. Volcke, V. Gubala, C. Doyle, L. Basabe-Desmonts, C. Dotzler, M. F. Toney, M. Iacono, R. I. Nooney, S. Daniels, B. James, D. E. Williams, J. Mater. Chem. 2010, 20, 4116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVKjtr8%3D&md5=9ed244e29004e3acc92b90d895d176acCAS |
[19] N. C. H. Le, V. Gubala, R. P. Gandhiraman, C. Coyle, S. Daniels, D. E. Williams, Anal. Bioanal. Chem. 2010, 398, 1927.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVygsrfE&md5=ec24893077bd6e2c4994fb8f5394e32aCAS |
[20] S. K. Vashist, C. K. Dixit, B. D. MacCraith, R. O’Kennedy, Analyst (Cambridge, U. K.) 2011, 136, 4431.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12itbvN&md5=dd4defa83eef1d31e76ccd30af0863f9CAS |
[21] S. K. Vashist, Protocol Exchange 2011, 1.
| Crossref | GoogleScholarGoogle Scholar |
[22] T. I. Sainsbury, D. Okawa, D. Pacilé, J. M. J. Fréchet, A. Zettl, J. Phys. Chem. C 2007, 111, 12992.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVSnt7g%3D&md5=dcc22298cde3f5bcffe03b74ca182a91CAS |
[23] G. Fagas, J. C. Greer, Nanotechnology 2007, 18, 424010.
| Crossref | GoogleScholarGoogle Scholar | 21730443PubMed |
[24] P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, J. Phys. Chem. B 2006, 110, 7238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFWitro%3D&md5=1cdfdf5f307fb575ed0bab2fa6cea1d3CAS | 16599493PubMed |
[25] T. F. C. Sönnichsen, T. WilkNote, G. von Plessen, J. Feldmann, New J. Phys. 2002, 4, 93.
| Crossref | GoogleScholarGoogle Scholar |
[26] L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, C. D. Keating, J. Am. Chem. Soc. 2000, 122, 9071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1ChtLs%3D&md5=b4fe7b6c9e76116d790d4da734db6a0aCAS |
[27] N. O Connor, R. P. Gandhiraman, C. Doyle, B. James, D. E. Williams, S. Daniels, J. Mater. Chem. 2012, 22, 9485.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFGisrw%3D&md5=3e74b0ce59bded5a5ff332cf7443ad7cCAS |
[28] R. P. Gandhiraman, N. C. H. Le, C. Doyle, C. Volcke, V. Gubala, S. Uppal, C. K. Dixit, R. Monaghan, B. James, R. O’Kennedy, S. Daniels, D. E. Williams, ACS Appl. Mater. Interfaces 2011, 3, 4640.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOks7bN&md5=997ddd34d11fed41e0a490cacd39ed56CAS | 22029622PubMed |