Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of Flame-retardant Phosphaphenanthrene Derivatives with High Phosphorus Contents

Jinyun Zheng A C , Yujian Yu A , Lulu Zhang A , Xiaomin Zhen A and Yufen Zhao A B
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China.

B Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, P. R. China.

C Corresponding author. Email: zhengjy@zzu.edu.cn

Australian Journal of Chemistry 67(11) 1688-1692 https://doi.org/10.1071/CH13722
Submitted: 2 December 2013  Accepted: 18 March 2014   Published: 1 May 2014

Abstract

Two novel types of phosphate derivatives of phosphaphenanthrene with a high phosphorus content were prepared by phosphorylation reaction between either 2-(6-oxido-6H-dibenz<c,e><1,2>oxaphosphorin-6-yl)-methanol (ODOPM) or 2-(6-oxido-6H-dibenz<c,e><1,2>oxaphosphorin-6-yl)-1,4-benzenediol (ODOPB) and dialkyl phosphoryl chloride. The structures of all compounds were characterised by 1H NMR, 13C NMR, 31P NMR, Fourier transform infrared spectroscopy, and high-resolution mass spectrometry. The thermal stability of representative compounds was determined by thermal gravimetric analysis and differential scanning calorimetry. The results showed that the compounds have excellent resistance to oxidation, high thermal stability with an onset decomposition temperature above 200°C, and a high char yield over 25 %, owing to the high P content. The representative compound was added to conventional electrolytes of lithium-ion batteries as flame retardant additive, and the self-extinguishing time and ionic conductivity were measured. The result showed that the compounds have effective flame retardant properties.


References

[1]  S. Y. Lu, I. Hamerton, Prog. Polym. Sci. 2002, 27, 1661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVelsbY%3D&md5=651a556ea12ae9e7104527aaa5ecb29cCAS |

[2]  M. García, I. Rodríguez, R. Cela, J. Chromatogr. A 2007, 1152, 280.
         | Crossref | GoogleScholarGoogle Scholar | 17140588PubMed |

[3]  S. Liang, M. Neisius, H. Mispreuve, R. Naescher, S. Gaan, Polym. Degrad. Stabil. 2012, 97, 2428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmt7jL&md5=38e021c6f8e52a41c6996ed8aa6d2908CAS |

[4]  Q. Zhang, H. Noguchi, H. Wang, M. Yoshio, M. Otsuki, T. Ogino, Chem. Lett. 2005, 34, 1012.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlCntr4%3D&md5=8cabb973639cd991144becd570064393CAS |

[5]  M. J. Tsafack, J. Levalois-Grützmache, Surf. Coat. Tech. 2006, 201, 2599.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1agsrnF&md5=21a62c5138702d4765476488ab4947d8CAS |

[6]  A. König, E. Kroke, Fire Mater. 2012, 36, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J. M. Tarascon, M. Armand, Nature 2001, 414, 359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFGitrY%3D&md5=da1449b1b6da3477896a0a71164bb314CAS | 11713543PubMed |

[8]  M. Broussely, G. Archdele, J. Power Sources 2004, 136, 386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1CmtLg%3D&md5=bc4185e6aa431e01b18784121dec261fCAS |

[9]  E. G. Shim, T. H. Nam, J. G. Kim, H. S. Kim, S. I. Moon, Electrochim. Acta 2009, 54, 2276.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFajt70%3D&md5=cf8ee14ab83a695a346dd5abd49d5fadCAS |

[10]  H. F. Xiang, H. Y. Xu, Z. Z. Wang, C. H. Chen, J. Power Sources 2007, 173, 562.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFalsLzN&md5=b528a7c1ba14b425a604403d396aa00bCAS |

[11]  K. Xu, S. S. Zhang, J. L. Allen, J. Electrochem. Soc. 2002, 149, A1079.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Sksr0%3D&md5=bc69491db435fc5e6d807d75c4554af8CAS |

[12]  X. Wang, L. Song, W. Xing, H. Lu, Y. Hu, Mater. Chem. Phys. 2011, 125, 536.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCrtbzL&md5=f20a9759e3fc6007d9392f2a722d061aCAS |

[13]  A. König, E. Kroke, Polym. Adv. Technol. 2011, 22, 5.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  C. S. Wang, J. Y. Shieh, Polymer 1998, 39, 5819.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls1Khsr0%3D&md5=bb452e3d2f217414322b746bf2549f58CAS |